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ABSTRACT

A sample of W → eν (W → µν) and Z0 → e+e− (Z0 → µ+µ−) events recorded by

the CDF detector for pp̄ collisions at
√
ŝ = 1.96 TeV are used to evaluate the systematic

uncertainty in the determination of the W boson mass arising from uncertainties in the

parton distribution functions and higher-order QCD effects. The systematic contribution of

PDFs is determined to be 10 MeV/c2 for MSTW2008 NLO and 12 MeV/c2 for CTEQ6.6.

The total systematic contribution arising from higher-order QCD effects in 9 MeV/c2.

The Z0 events are used to extract improved estimates of the phenomenological param-

eters in the BLNY model that describes low transverse momentum.
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ŝ = 80.403 GeV to

√
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1 Standard model of particle physics 1

Chapter 1

Standard model of particle
physics

1.1 Introduction

One of the lasting ideas of the ancient world was that all things were affected

by four distinct forces: earth, air, wind and water. It is an amusing coincidence

that modern physics also refers to four forces: the electromagnetic interaction

that provides the illusion of solid structure when objects consist mainly of

empty space; the strong interaction that binds atomic nuclei; the weak inter-

action that the world primarily encounters through radioactivity; and gravity,

the force that attracts matter together.

The first three of these forces, electromagnetic, weak and strong, are de-

scribed by a well tested framework, the standard model of particle physics.

Gravity is described by the general theory of relativity and attempts to merge

it with the standard model have so far failed; however, the influence of gravity

in the regime described by the standard model on Earth is very weak, and it

is safely neglected.
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1.2 Particles

The particles in the standard model can be separated into three groups: lep-

tons, quarks and gauge bosons. Together the leptons and quarks are known as

fermions, spin-1
2

particles that object Fermi-Dirac statistics. Correspondingly,

bosons have integer spin and obey Bose-Einstein statistics.

1.2.1 Quarks

Quarks, exotically named by Murray Gell-Mann, are one half of the family of

fermions. There are three families of quarks each successively more massive

than the next: up and down; charm and strange; top and bottom. The up,

charm and top quarks all have 2
3

electric charge, the down, strange and bottom

quarks all have -1
3

electric charge. The interaction of quarks is predominantly

via the strong force. All quarks carry one of the three colour charges.

The lightest of the quark families, the up and down quarks, are the most

abundant. This is because they are bound up in protons and neutrons, as

discovered by deep-inelastic scattering experiments in the 1960s. The strange,

charm and bottom quarks were added to the list of known quarks during the

60s and 70s, but it was not until the discovery of the top quark at the Tevatron

in 1995 [1, 2] that the third generation was complete.

Why there are only three families of quarks remains a mystery. An addi-

tional fourth family of quarks is permitted in speculative unification models

with masses around 220–280 GeV/c2 [3]; however, attempts to find a fourth

family of heavier quarks have set a lower limit of 250 GeV/c2 on the masses

of additional bottom-like [4] or top-like [5] quarks.
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1.2.2 Leptons

The other half of the fermion family are the leptons. As with the quarks, the

leptons exist in three families: a charged lepton, the electron, muon and tau;

and an associated neutrino of the same flavour.

The electron, discovered by Thompson in the late 19th century, was known

about before all of the quarks. It, along with all of the other charged leptons,

has a -1 electric charge. The charged leptons interact via the electromagnetic

and weak interaction but not the strong interaction. The neutrinos, originally

posited by Pauli to preserve conservation laws in β-decay, have no electric

charge and only interact via the weak interaction making them very elusive

objects. Neutrinos were originally thought to be massless but the discovery of

neutrino oscillation in the late 20th century implies that neutrinos have a tiny,

yet non-zero, mass [6].

1.3 Forces

As previously mentioned there are three forces in the standard model, each de-

scribed by a quantum field theory: the strong interaction is described by quan-

tum chromodynamics (QCD) [7]; the electromagnetic interaction is described

by quantum electrodynamics (QED); and the weak interaction is described by

the electroweak theory of Glashow [8], Weinberg [9] and Salam [10]. Each of

these interactions are mediated by the exchange of gauge bosons, integer-spin

carriers of force.

1.3.1 Quantum electrodynamics

Quantum electrodynamics governs the interaction of leptons and quarks. It

is a quantum field theory that obeys U(1) symmetry and has the following
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Lagrangian:

L = ψ̄ (iγµDµ −m)ψ − 1

4
FµνF

µν (1.1)

where Fµν = ∂µAν−∂νAµ is the field strength tensor and the covariant deriva-

tive, Dµ, is introduced to maintain local gauge invariance1 of the Lagrangian:

Dµ = ∂µ − ieAµ. (1.2)

The Aµ field introduced in the covariant derivative can be identified with the

photon and it is the mediator of the electromagnetic force. The photon is

required to be massless because terms in the QED Lagrangian that would

grant mass to the photon, such as mAµA
µ, break the local gauge invariance of

QED.

1.3.2 Quantum chromodynamics

The interaction of quarks is described by quantum chromodynamics (QCD).

Each quark carries one of three colour charges usually called red, green and

blue. QCD is a quantum field theory that obeys SU(3) symmetry and has the

following Lagrangian:

L = ψ̄ (iγµDµ −m)ψ − 1

4
Ga
µνG

µν
a (1.3)

where eight gluon fields, Ga
µν , are introduced. The covariant derivative is

Dµ = δµ − igTaGa
µ (1.4)

where Ta is one of the eight non-commuting generators of SU(3) in a traceless

matrix representation. As with QED, the introduction of mass terms for any

1Local gauge invariance is satisfied when a local phase dependence imposed on the inter-
acting fields, ψ → eα(x)ψ, leaves the Lagrangian unchanged.
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of the gluon fields breaks the local gauge invariance of QCD which implies that

the gluons are massless. The gluon field tensor is

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gfabcGb
µG

c
ν (1.5)

where gfabcG
b
µG

c
ν represents the gluon self-interaction which arises from the

non-Abelian nature of the generators: [Ta, Tb] = fabcTc. These self-interaction

terms missing in QED permit the gluon to interact with other gluons.

1.3.3 Electroweak interaction

The electroweak theory is an extension of QED which unifies electromagnetic

and weak interactions. It was developed separately by Weinberg, Glashow and

Salam during the 1970s. It is a quantum field theory that obeys SU(2)×U(1)

symmetries where the U(1) group has an associated field, Bµ, and the SU(2)

group has three fields, W i
µ. As with QED and QCD, a Lagrangian can be

constructed:

L = ψ̄ (iγµDµ −m)ψ − 1

4
BµνB

µν − 1

4
W i
µνW

i,µν (1.6)

where the field strength tensors are

W i
µν = ∂µW

i
ν − ∂νW i

µ − gW εijkW j
µW

k
ν (1.7)

Bµν = ∂µBν − ∂νBµ (1.8)

following the same structure for U(1) in QED and a similar structure from

QCD for SU(2). The three W i generators have a matrix representation, Ti,

where T is called weak isospin and has the following commutation relations:

[Wi,Wk] = εijkWi and ε123 = 1. With these the covariant derivative used to

preserved the local gauge invariance of Equation (1.6) can be constructed:

Dµ = δij∂µ + igW (T ·Wµ)ij + iδijY g
′
WBµ (1.9)
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where Y is weak hypercharge, the charge of the U(1) interaction. Weak hy-

percharge is related to the third component of weak isospin so that

Q =
Y

2
+ T3 (1.10)

where Q is the electric charge and all are conserved quantum numbers in weak

interactions.

Right-handed leptons form isospin singlets and left-handed leptons form

isospin doublets:

ψL =

(
νe
e−

)
,

(
νµ
µ−

)
,

(
ντ
τ−

)
and (1.11)

ψR = e−, µ−, τ−. (1.12)

Left-handed quarks also form isospin doublets:

ψL =

(
u
d′

)
,

(
c
s′

)
,

(
t
b′

)
(1.13)

where the primed quarks are weak eigenstates. These weak eigenstates that

take part in the electroweak interaction are related to the mass eigenstates by

the Cabbibo-Kobayashi-Maskawa (CKM) [11, 12] matrix: d′

s′

b′

 =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 d
s
b

 . (1.14)

which has a unitarity constraint, V †V = 1, and leads to the following relations:∑3
i=1 |Vij|2 = 1,

∑3
j=1 |Vij|2 = 1, and

∑3
k=i V

∗
kiVkj = 0 for i 6= j.

The W 1
µ and W 2

µ fields can be re-written as:

W±
µ =

1√
2

(
W 1
µ ∓W 2

µ

)
(1.15)

and the remaining W 3
µ field can be mixed with Bµ to form:

Aµ = cos θWBµ + sin θWW
3
µ and (1.16)

Zµ = − sin θWBµ + cos θWW
3
µ . (1.17)

This allows four massless bosons to be identified with the electroweak interac-

tion: W+
µ , W−

µ , Zµ and Aµ.
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1.3.4 Higgs mechanism

The discovery of the massive W and Z0 bosons by UA1 [13, 14] and UA2

[15, 16] at CERN’s Super Proton Synchrotron (SPS) poses a problem for the

massless weak bosons in Section 1.3.3. As with QED and QCD, the addition

of boson mass terms would break the local gauge invariance of the Lagrangian.

This problem is fixed by means of the Higgs mechanism. A complex doublet

of scalar fields is added to the SU(2)×U(1) electroweak Lagrangian. A Higgs

potential of the form V
(
φ†φ
)

= λ
(
φ†φ
)2 − µ2φ†φ is added to the covariant

derivative in Equation (1.9). When µ2 > 0 this forms a characteristic “Mexican

hat” potential well with a minimum not located at φ = 0; instead there are

degenerate minima at:

|φ| =
√
µ2

λ
=

v√
2
. (1.18)

The SU(2)×U(1) symmetry is broken by picking one of the minima and

expanding around this minimum. The electroweak Lagrangian acquires addi-

tional terms [7]:

LM =
g2
Wv

2

4
W+
µ W

−µ +
(g2
W + g′2W ) v2

8
ZµZ

µ (1.19)

which correspond to W and Z0 bosons with masses given by:

MW =
1

2
vgW (1.20)

MZ =
1

2
v
√
g2
W + g′2W (1.21)

where sin2 θ = g2
W/ (g2

W + g′2W ) and cos θW = MW/MZ .

In addition, the Lagrangian also gains self-energy terms involving the new

field [7]:

LH =
1

2
∂µH∂

µH − µ2H2 − λvH3 − 1

4
λH4 (1.22)



1.3 Forces 8

which implies the existence of an additional massive boson with a mass
√

2µ =
√

2λv, the Higgs boson.

To date there has been no observation of the Higgs boson. Limits of MH >

114 GeV/c2 [17] and 158 < MH < 175 GeV/c2 [18, 19] have been set by LEP

and the Tevatron, respectively. The observation of the Higgs boson is one of

the major objectives of the physics programme at the Large Hadron Collider

[20].
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Chapter 2

Tevatron and CDF

The Fermi National Accelerator Laboratory (FNAL), commonly known as Fer-

milab, is a research facility co-operated by the U.S Department of Energy and a

collaboration of universities. Its stated mission is to advance “the understand-

ing of the fundamental nature of matter and energy by providing leadership

and resources for qualified researchers to conduct basic research at the frontiers

of high energy physics and related disciplines” [21].

Located in the suburbs of Chicago, Fermilab is home to the Tevatron,

formerly the world’s highest energy particle collider. Operating at a centre-of-

mass energy of 1.96 TeV, the Tevatron is a circular machine which collides 980

GeV protons with 980 GeV antiprotons every 396 ns for high energy physics

studies over a number of hours.

2.1 Particle accelerator chain

The production, acceleration and distribution of protons and antiproton beams

involves multiple linear accelerators and synchrotrons designed to maximise

the energy and instantaneous luminosity of the colliding pp̄ beams. Increased

energy is desirable because it allows the production of more massive particles
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Figure 2.1: A schematic representation of the accelerator chain at Fermilab.

and greater luminosity, the number of particles passing through a unit area in

unit time, is desired because it increases the number of interactions when the

beams collide.

2.1.1 Proton source

The combined machines which produce the initial proton beam are the Pre-

accelerator, the Linear Accelerator (Linac) and the Booster, collectively known

as the “proton source”.

Pre-accelerator

A magnetron produces hydrogen ions from hydrogen gas every 66 ms. An

electric field strips the electrons off the protons and the resulting plasma is

passed over caesium, where the protons pick up two electrons. The H− beam

is accelerated through a drift tube by a Cockcroft-Walton generator up to 0.75

MeV before it is sent toward the linear accelerator.
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The linear accelerator

The linac is formed in two major sections. The first section consists of five

cylindrical Alvarez drift chambers which accelerate the hydrogen ion beam

from 0.75 MeV to 116 MeV. The second section consists of seven side-coupled

cavity modules which accelerate the 116 MeV beam up to 400 MeV. The linac

can operate in several different modes. Whenever the linac sends the hydrogen

beam toward the Booster it is operating in its High Energy Physics mode.

Alternatively, the linac can also provide particles for the cancer treatment

facility on site [22].

Booster

The minimum energy the Main Injector accepts is 8 GeV which would require

a linear accelerator many miles in length. This is not feasible so the Booster is

an intermediate synchrotron which serves as the coupling between the linear

accelerator and the Main Injector.

A further purpose of the Booster is to strip away the electrons from the

H− ions leaving a proton beam. The H− bunches are passed through a thin

carbon foil which removes the electrons. The machine is 150 m in diameter and

consists of 19 radio-frequency cavities, taking 22 ms for a proton to complete

one loop of the Booster.

2.1.2 Antiproton source

The production of antiprotons is one of the more time-intensive aspects of the

accelerator chain. An 8 GeV beam of protons is diverted away from the Main

Injector and directed towards a nickel fixed-target. The collision produces

many secondary particles and the resulting antiprotons are extracted.
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Debuncher and Accumulator

The beam of antiprotons is sent toward a pair of machines, the Debuncher

and Accumulater, designed to collect and store the batches of antiprotons

produced from the fixed target collisions. The main role of the Debuncher is

to prepare the antiproton bunches for storage in the Accumulator by reducing

the momentum of the antiprotons and the transverse size of the beam. The

Accumulator, suggestively, accumulates antiprotons over a number of hours.

Both machines are housed in the same tunnel.

Recycler

The Recycler is a storage ring for antiprotons located in the same tunnel as

the Main Injector. It accepts antiprotons from the Accumulator via the Main

Injector and cools them further. An 8 GeV beam of thermally cool electrons

is passed over the hotter 8 GeV antiproton beam and glancing collisions be-

tween the beams transfers longitudinal momentum. This gives more compact

antiproton bunches which allows for more luminous collisions. Unlike many

of the machines, the Recycler does not accelerate particles and it mainly uses

permanent magnets to direct the beams as opposed to electromagnets.

2.1.3 Main Injector

The Main Injector serves as a connecting machine between the proton source

and a variety of different experimental apparatus. It has a circumference seven

times larger than the Booster. The Main Injector is a replacement for the

older Main Ring accelerator which, as the Main Ring was housed in the same

tunnel as the Tevatron, was deemed to interfere too much with the Tevatron

and degraded the quality of the colliding beams1. It accepts the 8 GeV proton

1Originally the Main Ring was the primary synchrotron at Fermilab with the Tevatron
a more powerful addition in the same tunnel. The building of CDF and DØ required the
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beam from the Booster and is capable of accelerating the protons up to different

energies depending on the destination.

The Main Injector has a number of different modes of operation which relate

to its need to provide 150 GeV protons for the Tevatron, 120 GeV protons for

the NuMI apparatus [23], and to redirect antiprotons from the Accumulator

to the nearby Recycler.

2.1.4 Tevatron

The Tevatron is the primary synchrotron at Fermilab and, with colliding beam

energies of 980 GeV and a centre-of-mass collision energy of 1.96 TeV, held the

title of the highest-energy particle collider in the world until the Large Hadron

Collider began operating at higher energies. The Tevatron accepts 150 GeV

protons and antiprotons from the Main Injector and accelerates the particle

beams up to the collision energies of 980 GeV. Once the particle beams are

accelerated the Tevatron is effectively a storage ring for the particles while

they circle the machine. To avoid particle interactions when not desired, the

proton and antiproton beams are held in different helical orbits.

The radius of the machine is one kilometre and the ring consists of six

major sections named A to F. The beginning of each section is named A0 to

F0. B0 and D0 serve as “interaction points” where the circling proton and

antiproton beams are passed through one another. Each of these points is

home to one of the two detectors at the Tevatron: the Collider Detector at

Fermilab (CDF) at B0 and DØ at D0.

The fixed collection of protons and antiprotons that circle the Tevatron for

the purpose of high energy physics studies is know as a “store.” A store may

Main Ring to be redirected to avoid passing through their detection volume and this added
to the problems with the Tevatron and Main Ring sharing a tunnel.
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last for a number of hours while the rest of the accelerator complex delivers

particles for the NuMI neutrino beam and produces antiprotons for future

stores. Over the lifetime of the store the instantaneous luminosity of the

colliding beams decreases and when the instantaneous luminosity gets too low

for useful physics the store is ended.

A new store is prepared by moving proton bunches from the Main Injector

to the Tevatron. The Main Injector accepts proton bunches from the Booster

and coalesces them into a larger “super-bunch”. A single proton super-bunch

is injected at a time and is separated by 396 ns from the previous bunch.

There are 36 bunches in total with larger abort gaps (2.617 µs) between a

“train” of 12 bunches. Once the protons are orbiting within the Tevatron,

the 36 bunches of antiprotons are extracted from the Recycler by the Main

Injector and inserted into the Tevatron. The antiprotons bunches are also

separated by 396 ns. The proton and antiproton beams are accelerated from

150 GeV to 980 GeV, and the beam size is squeezed to increase the luminosity

of the collisions. Collimators are used to scrape away parts of the beam that

have dispersed away from the centre of the beam in order to protect detection

equipment from radiation damage.

The Tevatron has been performing well for a number of years, as can seen

in Figure 2.2, and has provided CDF and DØ with pp̄ collision data with more

than 9 fb−1 of integrated luminosity at a 1.96 TeV centre-of-mass energy. The

Tevatron is scheduled to run until October 2011 where it is hoped to have

accumulated data with an integrated luminosity of 12 fb−1.

2.2 The Collider Detector at Fermilab

The Collider Dectector at Femilab (CDF) [25, 26, 27] is one of the two general

purpose particle detectors at Tevatron. It has a cylindrical design where a
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(a) Integrated luminosity

(b) Peak instantaneous luminosity

Figure 2.2: The performance of the Tevatron over the lifetime of Run II. (a) The integrated
luminosity of the pp̄ data provided to CDF and DØ for high energy physics studies and over 9
fb−1 has been delivered to date (Summer 2010). (b) The peak instantaneous luminosity of pp̄
collisions which can be seen to have increased over time, showing an increased performance

of the Tevatron in providing high luminosity physics collisions. [24]
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number of detection systems surround the beam pipe at an increasing radius

in the “central” region with further systems in the flat end-caps known as the

“plug”. A cut-away of the detector is shown in Figure 2.4.

The design of CDF makes it natural to work in a cylindrical coordinate sys-

tem where the positive z-axis is directed along the beam pipe and in the direc-

tion of the traveling protons. Figure 2.3 and Equation (2.1) to Equation (2.5)

show the relationship between the radial axis, r, azimuth, φ, and Cartesian

coordinates. The pseudorapidity is invariant to boosts along the z-axis and is

defined by Equation (2.4). The central region of CDF is symmetric in φ and

extends to approximately 1 in |η|. The plug detectors cover 1 < |η| < 2.6.

x = ρ cosφ sin θ = r cosφ (2.1)

y = ρ sinφ sin θ = r sinφ (2.2)

z = ρ cos θ (2.3)

η = − ln tan
θ

2
(2.4)

r = ρ sin θ. (2.5)

In the central region, the detector is optimised to measure properties in the

plane transverse to the beam pipe. This is because many transverse properties

are invariant with respect to Lorentz boosts along the z-axis. In addition, the

hadronic decays of the spectator quarks are typically lost down the beam pipe

which makes it impossible to impose the conservation of momentum in the

z-axis as a kinematic constraint.

2.2.1 Particle tracking

CDF has two main tracking systems: the silicon detectors and the gas drift

chambers. The silicon detectors [28] are referred to as Layer 00 (L00), Silicon
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x̂
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ẑ

(b)

r̂

ρ

θ

Figure 2.3: The coordinate system used at CDF. (a) The radial axis, r, and azimuth, φ
are shown in the x − y plane transverse to the beam pipe. The detector is designed to be
φ-symmetric. (b) The pseudorapidity, η = − ln tan (θ/2), is defined in the r − z plane.

Vertex detector (SVXII) and Intermediate Silicon Layers (ISL), and are pri-

marily looking for the decays of short-lived particles close to the beam pipe.

The innermost silicon detector is Layer 00 which rests on the beam pipe and

covers 1.35 cm to 1.62 cm in the radial direction. Located so close to the

passing beam it needs to be radiation-tolerant, capable of withstanding 5–10

MRad [28]. The SVXII [29] consists of five double-sided layers of silicon in

three cylindrical barrels. Altogether, the SVXII detector covers a range from

2.5 cm to 10.6 cm in the radial direction. The final silicon tracking system,

the ISL [30], spans from 19.7 cm to 29.0 cm in the radial direction.

The other main tracking system at CDF is the Central Outer Tracker

(COT) [31]. It is drift chamber, 300 cm in length along z, and covers the

entire central region in |η|. It spans from 44 cm to 132 cm in the radial di-

rection. The original design of the detector had an even mixture of argon and

ethane but degradation of the chamber necessitated the introduction of small

quantities of oxygen to slow down the accumulation of polymers on the surface

of the wires [32, 33].

The COT contains 96 layers of sense wires that are grouped into eight

concentric “superlayers” of twelve layers. Each superlayer has one of two

orientations: “axial”, where all the sense wires run parallel to the beam and
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Figure 2.4: An elevation view of half of CDF showing the various detector subsystems.

give a good resolution in the r − φ plane; and “stereo”, where the layers in a

superlayer alternate between having a 2◦ inclination with respect to the beam

and a 2◦ declination. Stereo superlayers allow for reconstruction in the r − z

plane. The superlayers alternate between the axial and stereo configurations

and the combination allows for a 3D reconstruction of a charged particle’s path

through the chamber.

Surrounding the COT at a radius of 1.5 m is a solenoid that is 4.8 m in

length [27]. The 1.4 T magnetic field it provides aids with particle identifi-

cation. Charged particle and antiparticles are distinguished from one other

by the direction of the Lorentz force and the reconstructed paths are used to

estimate their momenta transverse to the beam pipe:

pT =
eB

2|C|
=
eB

2

2R

|q|
(2.6)

where e is the charge of an electron, B is the magnetic field strength, and C ≡

q/(2R) is the curvature for a particle with charge q and radius R. The value of
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eB/2 at CDF is 2.11593× 103 GeV/cm [34]. The momentum resolution of the

tracking systems is ∆pT/p
2
T = 0.15% for COT tracking only, and ∆pT/p

2
T =

0.07% when using the COT, SVX and ISL.

2.2.2 Calorimetry

The calorimetry systems at CDF measure the energies of particles produced by

the collision between the proton and antiproton beams. In the central region,

|η| < 1, there is an electromagnetic calorimeter (CEM) which primarily records

the energy deposition of photons and electrons. Behind the electromagnetic

calorimeter there is the hadronic calorimeter (CHA) which records the more

deeply penetrating hadrons. Muons leave only a minimal deposition in both the

electromagnetic and hadronic calorimeters and neutrinos escape undetected.

In the plug there is also an electromagnetic calorimeter (PEM) in front of a

hadronic calorimeter (PHA) covering the forward range in |η|.

Central electromagnetic calorimeter

The central electromagnetic calorimeter [35] is a lead-scintillator sampling

calorimeter comprised of a modular “tower” geometry pointing toward the

interaction point. Each calorimeter tower is 0.1 units in |η| by 15◦ in φ. Ten

adjacent η-towers form one φ-wedge, and twenty-four wedges form one half of

the CEM detector. Where the halves meet a η = 0 there is no CEM coverage

and it is known as the “central gap”.

Each CEM tower contains thirty-one 5 mm polystyrene scintillator layers

interwoven with thirty layers of aluminium clad lead. The lead is 4.23 mm

thick with 0.38 mm of aluminium on both sides. When electrons or photons

enter the calorimeter they scatter off the metal nuclei producing more elec-

trons and photons leading to an avalanche of particles known as a “shower”.
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Photomultiplier tubes, connected to the scintillators by waveguides, convert

the light into a signal. The energy resolution of the CEM was studied using

test beam data [35] and is:

∆E

E
=

13.5%√
ET
⊕ κCEM (2.7)

where ET ≡ E sin θ is the energy of the electromagnetic shower in the r − φ

plane transverse to the beam pipe, κ is the effect of non-stochastic energy

resolution and is obtained from data separately, and ⊕ represents an addition

in quadrature.

Between the eight and ninth lead-scintillator layers are proportional strip

chambers, the central electromagnetic strip chambers (CES). The CES is lo-

cated at this depth in the tower as this corresponds to the expected maximum

transverse profile. Anode wires in the plane transverse to the beam pipe and

cathode strips along the z-axis collect charge proportional to the energy of the

showering particle. Particles showering in the CEM have different transverse

profiles and this aids in particle identification. The location of a shower in

the CES is defined by the global z-axis parallel to the beam pipe, and by the

local x-axis of the CES module which is transverse to the beam. In CES co-

ordinates, the central gap is defined by |zCES| < 4.2 cm, and |xCES| > 23.1 cm

defines the region of a φ-wedge where the response of the modules is degraded

due to gaps between adjacent modules in φ.

The lateral shower profile can also be used in particle identification. The

Lshr variable, Equation (2.8), is used to compare how the observed energies for

the adjacent towers in η, Eadj
i , compare with the expected energies, Eexp

i , from

test beam data [36]:

Lshr = 0.14
∑
i

Eadj
i − E

exp
i√

0.142Eadj
i + (∆Eexp

i )2

. (2.8)
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Central hadronic calorimeter

The central hadronic calorimeter (CHA) [37] has a modular design similar to

the CEM with a projective geometry pointing toward the interaction point

and towers segmented by 0.1 units in η and 15◦ in φ. Each tower is comprised

of layers of 2.5 cm steel and 1 cm of a doped acrylic scintillator.

The energy resolution of the CHA is obtained from test beam studies [37]

and is:

∆E

E
=

50%√
ET
⊕ κCHA (2.9)

where ET ≡ E sin θ is the energy of the hadronic shower in the r − φ plane

transverse to the beam pipe.

2.2.3 Muon chambers

Muons deposit minimal energy as they pass through CDF because of their

mass and the consequent reduced likelihood of bremsstrahlung. Hence, there

are specific drift chambers beyond the calorimetry systems designed to track

and identify muons. Coverage of muons in the central region is provided by

three separate detectors: the central muon detector (CMU), the central muon

upgrade (CMP), and the central muon extension (CMX). The CMU [38] and

CMP [39] cover the range |η| ≤ 0.6. The rest of the coverage in the central

region is provided by the CMX, 0.6 ≤ |η| ≤ 1.0 [39].

The CMU is attached to the outer ring of the central hadronic calorimeter

at a radius of 347 cm. It is partitioned into 15◦ wedges in φ but the active

detection range is only 12.6◦ leaving a small gap between wedges. To reduce

the residual pion signal, the CMP is placed behind steel sheets in a box around

the detector. The different geometry of the CMP gives it a smaller surface area

in the η − φ plane compared with the CMU (see Figure 2.5). A muon track



2.2 The Collider Detector at Fermilab 22

- CMX - CMP - CMU
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Figure 2.5: The coverage of the muon chambers in the η − φ plane.

reconstructed in both the CMU and CMP is known as a CMUP “stub”. The

drift times for the CMU and CMP are 800 ns and 1800 ns which is longer than

two bunch crossings; therefore, it is important for the muon stub to be matched

with the correct COT track so that the original pp̄ interaction is identified.

The CMX is a combination of conical arches covering 270◦ in φ and flat

chambers where the conical arches would otherwise pass through the floor

(“miniskirt”). It has its own scintillator (CSX) to allow for the fast timing

information to reject muon stubs from events that do not coincide with a

recent pp̄ collision.

2.2.4 Trigger

The Tevatron collides a proton bunch with an antiproton bunch every 396 ns

which is far too frequent in order to extract and store all the events that could

occur. Furthermore, not every event is of interest; therefore, it is essential to
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have a way of quickly identifying a potentially interesting interaction. This

gives rise to the three stage trigger system at CDF.

The most primitive stage, level 1, is a hardware based trigger using fast

algorithms to decide whether the basic tracking and calorimetric signals de-

mand further processing. While the level 1 trigger is making its decision some

extra information needed for level 2, such as silicon track information, is read

out and placed into one of four buffers. With a beam crossing every 396 ns

this corresponds to a readout rate of 2.5 MHz.

If a level 2 decision is required the buffered information collected while level

1 was running is used to make a more advanced decision: the silicon tracking

trigger forms secondary vertices, the CES provides showering information for

electron and photon identification, and the subsystems used to form a level 1

decision run more sophisticated algorithms.

Should level 2 accept the event then the full software reconstruction of

the event is carried out on an external computer farm and the level 3 trigger

decides whether to record the event to tape.

2.2.5 Performance

The plots in Figure 2.7 show the performance of CDF over the Run-II data

taking period to date. The data taking efficiency of CDF is relatively stable

over the Run-II period.
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Figure 2.6: An overview of the three level trigger used by CDF.

Figure 2.7: The performance of the CDF detector over the lifetime of Run II. The data
taking efficiency is presented as a function of store number. [40]
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Chapter 3

W mass measurement

In Section 1.3.4 the importance of the Higgs boson was introduced and the

mass of the W boson is related to the vacuum expectation value of the Higgs

field at leading order, Equation (1.20).

3.1 Importance and role in electroweak fits

The influence of the Higgs boson on the mass of the W can be seen through

its role in higher order diagrams. The radiative corrections can be related to

the masses of the weak bosons in the standard model by the following [7]:

1− M2
W

M2
Z

=
1

2

[
1−

(
1− 4πα√

2GFM2
W (1−∆r)

) 1
2

]
(3.1)

where GF is the Fermi coupling constant, α is the electromagnetic coupling

constant, and ∆r are the radiative corrections. The one loop radiative correc-

tions have been calculated [41] to give:

∆r ≈ α

α(M2
Z)

+
GF

8
√

2π2

(
−3 cot2 θWMt +

11

3
M2

W ln
M2

H

M2
W

)
(3.2)

where θW is the Weinberg angle, α(M2
Z) is the electromagnetic coupling con-

stant evaluated at the scale of the Z0 mass. Mt, MW and MH are the masses

of the top quark, W boson and Higgs boson, respectively.
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Figure 3.1: The standard model Higgs prediction from the recent LEP Electroweak Work-
ing group results [42, 43]. (a) The “blue band” plot showing the best fit value for the Higgs
mass obtained using ZFITTER [44] with the LEP low-mass and Tevatron high-mass direct
exclusions shown as shaded regions. (b) The constraint on a standard model Higgs boson
from electroweak measurements. The contours show the 68% confidence intervals for direct
(LEP2 and Tevatron) and indirect (LEP1 and SLD) measurements of the W and top quark
masses. The diagonal stripe is the corresponding Higgs mass prediction. Unshaded regions

of the plot are where a standard model Higgs has been excluded.

The implication of Equation (3.2) is that the mass of the Higgs boson and

the mass of the W have a logarithmic relationship. Precision measurements of

the top quark and W can be used to constrain the standard model prediction,

Figure 3.1 [43]. In Figure 3.1(a), the best fit value for the Higgs mass within

the standard model is presented with the LEP low-mass and Tevatron high-

mass direct exclusion regions. The 68% confidence interval contours of the

top mass and W mass measurements are shown with compatible standard

model Higgs masses in Figure 3.1(b). The constraint on the top and W masses

from direct measurements of the particles at LEP2 and the Tevatron form one

contour, and the indirect constraints from LEP1 and SLD results form the

other.



3.2 W fit variables 27

3.2 W fit variables

The mass W must be measured from the experimental observable properties

associated with the decay products of the boson. Decays into hadrons are

difficult to resolve from background processes at a proton-antiproton collider;

therefore, the lepton decay products, a charged lepton and neutrino, are used.

One such observable is the transverse momentum of the charged lepton.

Consider a proton with four-momentum Pp colliding with an antiproton

with four-momentum Pp̄ as depicted in Figure 3.2. At the Tevatron the proton

and antiprotons are traveling at 980 GeV and are highly relativistic1; hence,

the squared centre-of-mass energy of the proton-antiproton system is

s =
(
Pp + Pp̄

)2 ≈ 2Pp · Pp̄; (3.3)

hence, for a head-on collision with Ep = Ep̄ = 980 GeV and pp = −pp̄, the

centre-of-mass energy is2

s ≈ 2Pp · Pp̄ = 2
(
EpEp̄ + |pp||pp̄|

)
= (1960)2 GeV2. (3.4)

The simplest interaction producing a W involves a quark from the proton

annihilating with an antiquark from the antiproton. The proton emits a quark

which carries x1 of the total momentum and the antiproton emits an antiquark

with x2 of the total momentum. The squared centre-of-mass energy for the

quark-antiquark system, ŝ, is given by

ŝ = (x1Pp + x2Pp̄)
2 ≈ 2x1x2Pp · Pp̄ , (3.5)

and it is evident that ŝ = x1x2s by comparing Equation (3.3) and Equation (3.5).

1For relativistic particles the rest mass of the particle can be neglected and P 2 = E2 −
|p|2c2 = 0. In this section P denotes a four-vector, E is the energy and p is the momentum
vector with p ≡ |p|.

2In the following and throughout this analysis, the convention c = 1 is used.
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x1Pp x2Pp̄

Pp Pp̄

Figure 3.2: The centre-of-mass energy system for a quark and antiquark emitted from a
head-on collision between parallel proton and antiproton beams. There is no net transverse

momentum in the quark-antiquark system.

The colliding quark and antiquark with a centre-of-mass energy,
√
ŝ, pro-

duce a W which decays into a charged lepton and associated neutrino. The

most probable configuration is for the centre-of-mass energy to be shared

equally between each particle.The neutrino is not measured by CDF which

makes reconstructing the four-vector of the W difficult. In the central region,

CDF is optimised to measure properties in the r − φ plane transverse to the

beam pipe, and the transverse energy and momentum of the lepton in the

centre-of-mass frame can be defined as:

El
T ≡
√
ŝ

2
sin θ and plT ≈

√
ŝ

2
sin θ (3.6)

where θ is the polar angle in the r− z plane measured from the positive z-axis

(proton direction), and from Equation (3.6) it is evident that:

sin θ =
2El

T√
ŝ

and cos θ =

√
1− 4E2

T

ŝ
. (3.7)

The transverse properties of the neutrino can be inferred by energy and mo-

mentum conservation and transverse properties have the additional benefit of

being unaffected by longitudinal Lorentz boosts.

To first order, a lepton of charge q that results from the decay of a W

boson follows a characteristic angular distribution (the angular distribution is

discussed in more detail in Section 5.4.2):

dσ

d (cos θ)
∝ 1− q cos2 θ . (3.8)
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Which can be rewritten in terms of El
T :

dσ

dEl
T

=
d (sin θ)

dEl
T

· d (cos θ)

d (sin θ)
· dσ

d (cos θ)
. (3.9)

Substituting Equation (3.7) into Equation (3.9) and the transverse energy dis-

tribution of charged leptons is:

dσ

dEl
T

∝ 4El
T

ŝ

2− 4(El
T )2

ŝ√
1− 4(El

T )2

ŝ

(3.10)

which is singular when El
T is
√
ŝ/2. This result adds a characteristic feature to

transverse energy distributions known as the Jacobian edge, where the distri-

bution rises sharply as the transverse energy of the charged lepton approaches

the cut off and falls sharply beyond it.

The singularity in this distribution is made finite by replacing a fixed

centre-of-mass energy, ŝ, with a Breit-Wigner distribution, ŝ (MW ,ΓW ), which

depends on the mass of the W boson, MW , and the width, ΓW . The ET dis-

tribution remains peaked at
√
ŝ/2 but now with a sharply falling tail. The

sensitivity of the Jacobian edge to the mass of the W boson, via ŝ (MW ,ΓW ),

makes the transverse energy one possible kinematic distribution in which MW

can be measured.

Up to this point it has been assumed that the quark and antiquark collide

head on and the intrinsic transverse momentum of the W boson has been

neglected. Prior to the collision, one or both of the quarks that produce the

W may emit gluons which carry off a fraction of the quark’s momentum. The

colliding quarks now have some net momentum in the transverse plane as a

result of gluon radiation which is propagated into the W and resulting leptons.

An example is depicted in Figure 3.3.

Consider the charged lepton in the centre-of-mass frame of the W boson

with transverse energy, |El
T |com, and transverse momentum, |plT |com; the lepton
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x1Pp

x2Pp̄

Pp

Pp̄

g

Figure 3.3: The centre-of-mass energy system for a quark and antiquark emitted from
a head-on collision between parallel proton and antiproton beams with initial state gluon
emission. The gluon emitted prior to the quark-antiquark interaction imparts some net

transverse momentum on the quark-antiquark system.

is highly relativistic hence |El
T |com = |plT |com. The net transverse momentum

of the colliding quarks imparts a transverse momentum, pWT , on the W with

a transverse energy, EW
T . The kinematics of the lepton in the lab frame is

related to that in the centre-of-mass frame by:(
El
T

|plT |

)
lab

=

(
γ γβT
γβT γ

)(
El
T

|plT |

)
com

(3.11)

where βT = |pWT |/EW
T and γ = (1 − β2

T )1/2. From Equation (3.11) the prop-

erties of the lepton in the W centre-of-mass frame can be defined in terms of

the observed energy and momentum in the detector:

|El
T |lab = γ|El

T |com + γβT |plT |com (3.12)

|plT |lab = γ|plT |com + γβT |El
T |com. (3.13)

Expanding γ to first order in βT (γ ≈ 1+
β2

T

2
) and substituting into Equation (3.13)

gives, to first order:

|El
T |lab ≈ |plT |com + β|El

T |com +
β2

2
|plT |com + · · · (3.14)

≈ |plT |com + |El
T |lab
|pWT |
EW
T

. (3.15)

Recalling that the most probable configuration of energies is El
T = Eν

T which

implies that EW
T = El

T + Eν
T = 2El

T ; therefore,

|El
T |lab ≈ |El

T |com +
|pWT |

2
. (3.16)
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The transverse energy of the charged lepton as measured in the lab frame

has a first order dependence upon the transverse momentum of the W. pWT is

defined as plT + pνT but pνT is not measured directly. As such, pWT is not mea-

sured experimentally with particular accuracy which manifests as a uncertainty

on MW . The steps from Equation (3.11) to Equation (3.16) can be repeated

for the neutrino energy and momentum and recalling that |plT |com = −|pνT |com

by conservation of momentum:

|Eν
T |lab ≈ −|El

T |com +
|pWT |

2
. (3.17)

Another experimental variable that can be used to measure MW is the

transverse mass of the W boson. It is defined in the lab frame as:

(MW
T )2 =

(
|El

T |lab + |Eν
T |lab

)2 −
(
|plT |lab + |pνT |lab

)2
(3.18)

where El
T and Eν

T are the transverse energies of the charged lepton and neu-

trino, and plT and pνT are the transverse momenta of the charged lepton and

neutrino. This can be rewritten in terms of the transverse momenta and angle

of separation between the charged lepton and neutrino in the r−φ plane, ∆φ:

MT =
√

2|plT |lab|pνT |lab (1− cos ∆φ) (3.19)

where the relativistic approximation El
T = |plT | is made.

Substituting Equations (3.16) and (3.17), which both contain terms to first

order in |pWT |/|El
T |com, into Equation (3.19) and neglecting any second order

terms in |pWT |/|El
T |com yields

MT =
√

2|El
T |com|Eν

T |com (1− cos ∆φ) (3.20)

which is equivalent to Equation (3.19); therefore, the transverse mass of the

W is not sensitive to the transverse momentum to first order which is not
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Figure 3.4: The effect of the the W transverse momentum, |pWT |, on the Jacobian edge for
(a) the charged lepton transverse energy and (b) the transverse mass of the W. The dotted
line is the variable in the lab frame before simulating detector resolution or acceptance for
|pWT | = 0. The shaded area is the variable in the lab frame before simulating detector
resolution or acceptance for |pWT | 6= 0. The solid line is the variable in the lab frame after

simulating detector resolution and acceptance for |pWT | 6= 0.

the case for the transverse energy of the lepton. This can be observed in

Figure 3.4 where the charged lepton transverse momentum and W transverse

mass are shown with and without the influence of W transverse momentum.

It is for this reason that the primary fit variable used to estimate the W mass

is the transverse mass of the W, MW
T . The transverse energies of the charged

lepton and neutrino can be used to fit for MW but suffer from larger systematic

uncertainties, such as a greater dependence on the determination of pWT , and

are used to cross check the MW
T fit.

As previously mentioned, the neutrino escapes detection which hampers

efforts to measure pWT ; however, the transverse energy of the neutrino can be

inferred by balancing the total energy measured in the calorimeter against the

energy of the charged lepton. This hadronic recoil, U, is a vector in the r− φ

plane and is comprised of the hadronic decay products of the spectator quarks,

the decay products of the initial state and final state radiation, and the decay

products of any multiple interactions. The recoil vector is calculated by a

vector sum over all the calorimeter towers in the central region excluding any
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towers associated with the charged lepton. The total transverse momentum

must be conserved, U + plT + pνT = 0, which implies:

/ET ≡ |pνT | = −|U + plT | (3.21)

where an alternative definition of the neutrino energy, assumed to be the miss-

ing transverse energy, /ET , has been introduced.

The most likely MW is measured by performing a template fit of weighted

Monte Carlo events to data in the transverse mass of the W boson, MW
T , the

transverse momentum of the lepton produced in the decay of the W, El
T , and

the missing transverse energy, /ET . As has been shown, all of these distribu-

tions have a Jacobian edge where the Briet-Wigner distribution controls the

singularity with the values of MW and ΓW affecting the falling tail of the dis-

tributions. Several possible values for MW are compared by re-weighting the

relativistic Breit-Wigner assuming a constant W boson decay width, ΓW :

dσ

dŝ
∝ 1

(ŝ−M2
W )

2
+ Γ2

WM
2
W

. (3.22)

The result of a χ2 test of each template compared with data is computed and

the result minimised to obtain the most likely MW .
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Chapter 4

Event selection

This analysis uses data collected at CDF from Feburary 4, 2002 to August

4, 2007. After removing data periods where the detector’s data quality was

deemed unacceptable, the total integrated luminosity of the dataset is 2.3 fb−1.

640913 candidate W→ eν and 657193 candidate W→ µν events are selected

according to the W, electron and muon criteria. 22487 candidate Z0 → e+e−

and 47176 candidate Z0 → µ+µ− events are selected according to the Z0,

electron and muon criteria.

Particle and event identification uses several reconstructed kinematic vari-

ables and experimental signatures. The barrel design of CDF is optimised for

the measurement of transverse properties in the r − φ plane transverse to the

beam pipe.

4.1 Lepton selection criteria

The lepton selection for both electrons and muons is described in the following

section and is summarised in Table 4.1.
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Transverse momentum

The momentum of charged leptons in the transverse plane, plT , is calculated

from the reconstructed track curvature in a magnetic field, Equation (2.6).

In the absence of detector smearing and resolution effects, the most probable

energies of leptons produced from W and Z0 decays are 40 GeV/c2 and 45

GeV/c2. This is smeared out by resolution effects and longitudinal boosts

which can lead to lower measured values so a lower bound of 30 GeV/c is

set. An upper limit of 65 GeV/c is to reduce the contribution of background

processes.

Event vertex

The primary interaction vertex, z0, is required to be within 60 cm of the centre

of the detector. Studies at CDF using minimum bias data estimate that this

accepts 95.8% of events [45].

Tracking superlayer hits

In order to pass the COT tracking cut, a reconstructed COT track must leave

a minimum of 5 hits each on at least 4 axial and 4 stereo superlayers.

4.1.1 Electrons

In addition to the criteria outlined in Section 4.1, the following also apply for

a candidate lepton to be classified as an electron.

Track transverse momentum

The transverse momentum, Equation (2.6), of the electron candidate must be

greater then 18 GeV/c to satisfy the cut imposed by the level 3 trigger.
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Calorimeter energy ratio

Electrons are not expected to penetrate much further than the CEM; however,

some small leakage of energy from the electromagnetic to hadronic calorimeters

is expected. A cut is made on the fraction of energies deposited in the hadronic

calorimeter (EHAD) and electromagnetic calorimeter (EEM) where EHAD/EEM

must be less then 0.1 for an electron.

Energy-momentum ratio

The ratio of electron energy and momentum, E/p, should be one ignoring

detector resolution effects and in-flight energy loss. Bremsstrahlung, ionisation

and photon conversion can reduce the measured track momentum more so

than the energy deposited in the CEM, giving E/p a long tail above one. The

leakage of energy into adjacent towers and CEM resolution can lead to a lower

energy being reconstructed for an electron of a given momentum, leading to a

tail below one. Electrons are required to have E/p less than 1.6.

Lateral shower shape

Some electron energy may escape into adjacent calorimeter towers. Lshr, the

lateral shower profile, Equation (2.8), is used to compute the difference be-

tween the observed energies in η-adjacent towers and the energies expected

from test beam data [36]. Lshr must be less than 0.3 to be consistent with an

electron shower.

COT CES gap

Candidate electrons are required to have no more than 5 cm separating the

extrapolated COT track from the CES cluster in the r − φ plane, |∆z|.
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Cluster location

The electron shower must be reconstructed within a well instrumented volume

of the CES. A constraint on the local z-cordinate (12 < |zCES| < 230 cm)

avoids the gap between the two halves of the CEM, and a constraint on the

local x-coordinate (|xCES| < 18 cm) avoids regions where there is likely to be

more leakage between gaps in the electromagnetic and hadronic calorimeters

(see Section 2.2.2).

4.1.2 Muons

In addition to the criteria outlined in Section 4.1, the following also apply for

a candidate lepton to be classified as a muon.

Calorimeter energy

Muons penetrate the calorimeter and do not leave a large energy deposit in

either the electromagnetic or hadronic calorimeters. Candidate leptons are

required to leave less than 2 GeV in the electromagnetic calorimeter (EEM)

and less than 6 GeV in the hadronic calorimeter (EHAD) to be reconstructed

as a muon.

Decay-in-flight muons

To remove muons originating from hadron decays away from the interaction

point, a cut on the quality of the track fit to COT hits is made (χ2/dof < 3).

In addition, a cut on the track impact parameter, the closest point on a track

to the interaction point in the transverse plane, is made to remove a fraction

of muon decays not associated with the primary interaction (|d0| < 0.1 cm).
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Figure 4.1: Cut variables for W → eν data before cuts are applied. (a) The distribution
of the primary interaction point, z0. (b) The E/p distribution has a peak at unity and the
tail below unity that is produced by calorimeter resolution and energy leaking out of the
calorimeter. The high tail above unity is caused by bremsstrahlung from the primary electron
in the W decay. (c) The lower response at the edge of a calorimeter wedge is observed for
|xCES| > 18 cm. (d) The gap between calorimeter halves is observed for |zCES| < 12 cm.
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Lepton

|z0| ≤ 60 cm
30 < plT < 65 GeV/c

Four axial superlayers with at least five hits each
Four stereo superlayers with at least five hits each

Electron

ptrack
T > 18 GeV/c

E/p < 2
|xCES| < 18 cm

12 < |zCES| < 230 cm
EHAD/EEM < 0.1

Lshr < 0.3
|∆z| < 5 cm

Energy deposited in fiducial volume (tower 9 excluded)

Muon

|d0| ≤ 0.1 cm
χ2/dof < 3 GeV/c
EEM < 2 GeV
EHAD < 6 GeV

(∆xCMU ,∆xCMP ,∆xCMX ) < (3, 5, 6) cm

Table 4.1: The lepton identification cuts. Electron and muon candidates are required to
pass the ‘lepton’ cuts in addition to the specific lepton flavour cuts.

Muon stub reconstuction

The muon stub (see Section 2.2.3) is required to fall in a well-instrumented

region of the muon chambers. The muon stub is also expected to be well

matched to the associated COT track. Once extrapolated to the appropriate

muon chamber, the distance in the r−φ plane between the extrapolated track

and chamber must be less than 3 cm for the CMU, 5 cm for the CMP and 6

cm for the CMX.

4.2 Event selection criteria

Once the lepton candidates have been identified according to the criteria de-

fined in Sections 4.1.1 and 4.1.2, further requirements for a candidate event

are utilised to demand that the event be consistent with the production of a

W or Z0. These are described in Sections 4.2.1 and 4.2.2. Reconstructed muon



4.2 Event selection criteria 40

events must also pass the cosmic muon veto where the pair of muons must

both be moving away from the centre beamline in the r − φ plane: a comic

muon is expected to pass straight through the detector and to have one track

pointing in toward the beam line and one track pointing out. The cuts are

summarised in Table 4.2.

4.2.1 W

At least one candidate lepton is selected according to Section 4.1. The neutrino

is not directly measured. Cuts on the kinematic variables used to measure MW

(see Section 3.2) are made as follows.

Transverse mass

The transverse mass, Equation (3.19), is required to be between 60 and 100

GeV/c2.

Missing transverse energy

The neutrino produced with the primary lepton in the W decay is not detected

and its energy in the r−φ plane is not recorded. This missing transverse energy

(/ET ), Equation (3.21), is required to be between 30 GeV and 55 GeV.

Lepton transverse momentum

In addition to the plT cuts in Section 4.1, the transverse momentum of the

lepton is required to be less than 55 GeV/c.

Hadronic recoil

The hadronic recoil (U = |U|) of the event against the W (see Section 3.2) is

required to be less than 15 GeV/c.
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Z0 event

66 < MZ < 116 GeV/c2

|∆T0| < 4 ms
pZT < 30 GeV/c

Cosmic veto cut (muons only)

W event

60 < MW
T < 100 GeV/c2

30 < /ET < 55 GeV
plT < 55 GeV/c
|U | < 15 GeV/c

Cosmic veto cut (muons only)

Table 4.2: The event selection cuts. Z0 candidate events are required to have two identified
charged leptons; W candidate events require one identified charged lepton.

4.2.2 Z0

Z0 events require that at least two charged candidate leptons are selected

according to Section 4.1.

Invariant mass

The reconstructed mass of the two leptons must fall within the region 66

GeV/c2 to 116 GeV/c2.

Time of flight

In order to reduce background from cosmic events, a candidate event is required

to pass from the interaction point and through the COT in less than 4 ms

(∆T0). This is to remove events depositing energy in the calorimeters that

occur “out of time” with the crossing of the pp̄ beams.

Transverse momentum

The momentum of the Z0 in the r−φ plane, pZT , is required to be less than 30

GeV/c.
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Chapter 5

Event generation

This analysis uses a bespoke fast simulation of the CDF detector developed

from a previous analysis of the W decay width [46]. It is necessary to develop a

fast simulation of CDF because of finite computing power. In order to measure

systematic effects on the W mass to within 5–10 MeV/c2, it is desirable for

the statistical uncertainty arising from Monte Carlo events to be 0.5 MeV/c2

or smaller. This precision requires O(500 million) of events The CDF collabo-

ration has built a simulation of the detector, cdfSim, based upon GEANT3 [47]

but generating O(500M) events takes too long to be of utility in the W mass

analysis.

The production and decay of weak bosons in Drell-Yan [48] events is simu-

lated at next-to-leading order (NLO) in electroweak physics using HORACE [49],

with the final state boosted by randomly sampled transverse momenta gener-

ated using a resummed calculation of next-to-leading order quantum chromo-

dynamics (QCD) [50]. The QCD calculation is the same approach as used in

the RESBOS [51] event generator.

The response of the detector to particles from QCD radiation, spectator

quarks and multiple (minimum bias) interactions are described by a parametric

model tuned to Z0 decays.
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5.1 W and Z0 production

A Monte Carlo event generator produces particles by randomly assigning the

momentum fractions, x2 and x2 to the colliding quark and antiquark, as well

as the flavour of the colliding quarks. As seen in Equation (3.5), the x1 and

x2 of the quark-antiquark pair is used to calculate the squared center-of-mass

energy for the collision of the event, ŝ = x1x2s. At leading order in QCD and

electroweak theory, there is no net transverse momentum between the colliding

quark and antiquark. This implies

P1 =

√
s

2
(x1, 0, 0, x1) and (5.1)

P2 =

√
s

2
(x2, 0, 0,−x2) (5.2)

where P1 is assumed to be the quark or antiquark emitted by the proton and

P2 is from the antiproton. The produced boson has energy and longitudinal

momentum given by

EW =

√
s

2
(x1 + x2) and (5.3)

|pWL | =
√
s

2
(x1 − x2) (5.4)

with a rapidity

yW =
1

2
ln
EW − |pWL |
EW + |pWL |

=
1

2
ln
x1

x2

. (5.5)

The final state leptons are constructed in the centre-of-mass frame and

assigned a random direction in θ and φ. The final state of the event is Lorentz

boosted into the lab frame, Equation (3.11), where βL = |pWL |/EW .

The event is given a series of multiplicative weights. The cross section

as calculated from the matrix element of the process is included as an event
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weight. The event is given a further weight to account for the deviation of the

event’s
√
ŝ from the Breit-Wigner resonance at MW or MZ :

1

(ŝ−M2)2 + Γ2M2
(5.6)

where M is the mass of the boson and Γ is the decay width. The event is also

given a weight to ensure that the primary lepton the final state obeys the cor-

rect angular distribution, this is discussed in Section 5.4.2. The probabilities

associated with the momentum fractions of the colliding quarks are obtained

from the correct parton distribution functions, assigned as a weight. This is

discussed in more depth in Section 5.2.

5.2 Parton density functions

As mentioned in Section 5.1, the events are assigned additional weights to ac-

count for the composite nature of the colliding proton and antiprotons. The

structure of the colliding hadrons are described by parton distribution func-

tions (PDFs) produced by dedicated researchers. For this analysis the Les

Houches Accord PDF Interface (LHAPDF) [52] is used to obtain fq(xq, Q
2
q),

the probability of a quark (antiquark) of flavour q being emitted by the colliding

proton (antiproton) with a momentum fraction, x, and squared centre-of-mass

energy, Q2. The fq(xq, Q
2
q) for the quark from the proton and antiquark from

the antiproton are both included as multiplicative event weights. The x1 and

x2 affect the rapidity of the weak boson as Equation (5.5) shows, and this anal-

ysis is restricted to the central region of CDF which is approximately |η| < 1.

The rapidity of the boson affects the pseudorapidity of the charged lepton;

hence, the acceptance of the detector is indirectly affected by the boson rapid-

ity which depends upon the PDF used and its uncertainty. A detailed study

of PDFs and their increasing importance in MW measurements is discussed in

Section 6.1.
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5.3 Electroweak corrections

The effect of additional quantum electrodynamic (QED) and electroweak in-

teractions is simulated by using the HORACE [49, 53] event generator to produce

the final state leptons. It can produce W [53] and Z0 [49] bosons using a matrix

element calculation that is correct to O(α) in perturbative electroweak theory.

The O(α) matrix element calculation contains both the virtual and real

corrections to the leading order matrix element. The real corrections are

partitioned into two pieces by means of an energy cut: the emission of a

“hard” photon in the matrix element off one of the charged leptons in the

final state (bremsstrahlung); and the emission of “soft” virtual photons which

are collinear to the parent lepton. These soft photons cause the calculation

to diverge but this divergence is cancelled by including soft virtual photons in

the final result [53]. In addition to virtual soft photons, the virtual corrections

include vertex, box and boson self-energy corrections which become important

at high ŝ [54].

The emission of more than one photon is simulated by means of a next-to-

leading-logarithm (NLL) photon showering process analogous to parton show-

ering. The NLL photon shower is matched to the NLO matrix element expan-

sion so that they are identical at O(α). This matched mode of operation is

used in this analysis. The HORACE authors have checked their numerical results

against alternative next-to-leading order event generators and found excellent

agreement [55, 56].

5.4 QCD corrections

The effect of beyond leading-order quantum chromodynamics (QCD) is in-

cluded in the generation of W and Z0 bosons by modelling the dominant
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Figure 5.1: The generic production and decay of a weak boson from colliding beams of pp̄
particles.

processes that depart from the leading-order interaction. Ideally, the effect

of next-to-leading order and resummed QCD would be included with next-to-

leading order electroweak physics but no such generator exists. This forces a

choice between using an NLO QCD generator such as RESBOS [51] and mod-

elling the effect of electroweak physics, the method used in the first Run-II

measurement of MW [34], or using an NLO electroweak generator and mod-

elling QCD as used in the first Run-II measurement of ΓW [46]. While there

is no single generator that contains all the effects of interest in the MW mea-

surement, such a tool may be available in the future [57].

5.4.1 Transverse momentum

One of the dominant contributions of higher-order QCD is the emission of

initial state gluon radiation as discussed in Section 3.2. The emission of gluons

imparts a transverse momentum on the colliding quark and antiquark which

manifests in the transverse momentum of the W, |pWT |. While the primary

fit distribution, MW
T , only has a second order kinematic sensitivity to |pWT |,
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Figure 5.2: An example of W production and leptonic decay with next-to-leading order
QCD effects.

the transverse momentum is an input for the parameterisation of the hadronic

recoil which is used to infer the neutrino properties (see Section 5.5.5).

The higher-order corrections to the differential cross-section of weak boson

production are of the form [7]:

1

σ

dσ

dp2
T

≈ 1

p2
T

[
C1αs ln

M2

p2
T

+ C2α
2
s ln3 M

2

p2
T

+ Cnα
n
s ln2n−1 M

2

p2
T

+ · · ·
]

(5.7)

where M is the mass of the boson and the Ci coefficients are calculated sep-

arately. For transverse momenta less than 10–15 GeV/c the higher-order log-

arithmic terms begin to dominate the cross-section, and the series diverges

as the transverse momentum approaches zero [7]. Events with high-|pWT | are

the result of hard gluon initial state radiation and are well described in per-

turbative QCD; however, the low-|pWT | region is dominated by multiple soft

and collinear gluon emissions where the divergence in the perturbative QCD

calculation require the resummation formalism of Collins, Soper and Sterman

(CSS) [58]:

d3σ

dŝdp2
Tdy

=
1

(2π)2 δ
(
ŝ−M2

) ∫
W̃ (b∗)W̃

NP (b)ei~pT ·~bd2b+ Y (pT ) (5.8)

where M is the mass of the boson. The CSS approach splits the cross-section

into components calculable in perturbative NLO QCD, W̃ (b∗) and Y (pT ), and
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g1 0.21± 0.01 GeV2

g2 0.68+0.01
−0.02 GeV2

g3 −0.6+0.05
−0.04 GeV2

Table 5.1: The value of the phenomenological tuning parameters obtained by Brock et al.
for their choice of W̃NP , Equation (5.12), with Q0 = 1.6 GeV and bmax = 0.5 GeV−1 [60].

a non-perturbative component, W̃NP (b). The W̃ (b∗) and W̃NP (b) components

are integrated in b-space, the Fourier inverse of the transverse momentum,

where b∗ is defined in Equation (5.9):

b∗(b, bmax) =
b√

1 + (b/bmax)2
. (5.9)

The W̃NP (b) term is an ad hoc phenomenological model constrained by

low-energy Drell-Yan and Run-I Tevatron data. There have been multiple

versions suggested by various authors: Davies, Webber and Stirling (DWS),

Equation (5.10) [59]; Ladinsky and Yuan (LY), Equation (5.11) [51]; and Brock,

Landry, Nadolsky and Yuan (BLNY), Equation (5.12) [60]. The BLNY model

is used in this analysis and the global fit values are presented in Table 5.1.

W̃NP
DWS (b) = exp

(
−g1 − g2 ln

(
Q

2Q0

))
b2 (5.10)

W̃NP
LY (b) = exp

(
b2

[
−g1 − g2 ln

(
Q

2Q0

)]
− bg1g3 ln (100 · x1x2)

)
(5.11)

W̃NP
BLNY (b) = exp

(
−g1 − g2 ln

(
Q

2Q0

)
− g1g3 ln (100 · x1x2)

)
b2 (5.12)

This analysis uses Arnold, Brockway, Ellis and Reno’s calculation [50] of

perturbative NLO QCD matched to Arnold, Brockway, Kauffman and Russel’s

soft gluon resummation [61], albeit modified to use the BLNY non-perturbative

component. The perturbative calculation is compared with the resummed

cross-section in Figure 5.3.

For a nominal choice of phenomenological input gi parameters, boson ra-

pidity, y0, and centre-of-mass energy, ŝ0, a probability density function is cre-

ated and sampled to obtain a specific |pT | for a Z0 or W event. The event
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Figure 5.3: The next-to-leading order QCD prediction for |pWT | at a fixed rapidity
(y = 0.35) compared with the soft gluon resummation prediction. The divergence in the

perturbative QCD calculation can clearly be seen.

is Lorentz boosted by this amount in the transverse plane. As this probabil-

ity density function is produced using nominal values for y0 and ŝ0 and every

event has values for ygen and ŝgen obtained from the quark momentum frac-

tions, Equation (3.5) and Equation (5.5), the event weight is adjusted by the

following multiplicative weights:

w(|pWT |, ygen, ŝgen) =

dσ
d|pW

T |
(|pT |; ygen, ŝgen)

dσ
d|pZ

T |
(|pT |; y0, ŝ0)

or (5.13)

w(|pZT |, ygen) =

dσ
d|pZ

T |
(|pT |; ygen, ŝ0)

dσ
d|pZ

T |
(|pT |; y0, ŝ0)

(5.14)

where dσ
d|pV

T |
(|pT |; y, ŝ) is the prediction of the Arnold calculation for the V

weak boson (V ∈W,Z0) cross-section differential in |pVT | at a squared centre-

of-mass energy, ŝ, and boson rapidity, y. Figure 5.4 shows examples of the

distributions used to obtain the re-weighting functions and the corresponding

re-weighing functions are presented in Figure 5.5.
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Figure 5.4: The different predictions for dσ/dpT in W events at different rapidities, y, and
centre-of-mass energies, ŝ. The distributions have been normalised to unity. The generator
obtains a random |pWT | by sampling dσ/dpT at |y| = 0.35 and

√
ŝ = 80.403 GeV. A weight

it applied to events to correct for the different y = 0.5 ln(x1/x2) and ŝ = x1x2s in the event.

5.4.2 Angular momentum

W bosons produced from valence quarks at leading-order in QCD with no

transverse momentum are polarised along the beam axis with a differential

cross-section described by

dσ

d (cos θ)
∝ (1− qv cos θ)2 (5.15)

where qv is the charge of the boson and θ is the polar angle of the negatively

(positively) charged lepton produced in the decay with respect to the proton

(antiproton) direction. This asymmetry arises as a result of the V-A coupling

in the electroweak sector that links left-handed antineutrinos with right-handed

electrons and muons, and right-handed neutrinos with left-handed positrons

and antimuons. For the case of W+ (W−) bosons the up quark (antiquark) is

emitted by the incoming proton (antiproton) which gives the boson a prefer-

ential boost in the positive (negative) z-axis direction and the W+ (W−) has

its spin aligned in the positive z-axis direction. The positively (negatively)
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Figure 5.5: Two sample reweighting functions obtained using the dσ/dpT predictions in
Figure 5.4. (a) The rapidity function reweights an event from |y| = 0.35 to |y| = 0.1. (b)

The ŝ function reweights an event from
√
ŝ = 80.403 GeV to

√
ŝ = 100 GeV.
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Figure 5.6: The Collins-Soper frame. The incoming quarks and antiquark, and the primary
lepton are shown in the rest frame of the W.

charged lepton is preferentially emitted in the positive (negative) z-axis di-

rection because the associated neutrino (antineutrino) is forbidden to have a

right- (left-) handed helicity.

When higher-order terms in QCD are considered the differential cross-

section is described by Equation (5.16) where pT and qv are the transverse

momentum and charge of the boson, and φ and θ are the azimuthal and po-

lar angles of the lepton produced in the decay as defined in the Collins-Soper

frame [62]. The Collins-Soper frame, Figure 5.6, is an arrangement of the rest

frame of the W where the plane of the incoming quarks defines the xz-plane

and the y-axis is perpendicular to it. The azimuth and polar angles are de-

fined by the lepton decaying from the W. The effects of QCD are folded up in

pT -dependent coefficients, Ai. In the zero-transverse momentum case the only

non-zero coefficient is A4 and Equation (5.15) is reproduced.

The effect of next-to-leading order QCD is not included in the HORACE

generator and is added by means of a multiplicative weight. This is the first

time that the systematic effect of the helicity effects arising from NLO QCD

has been studied for a W measurement. The previous CDF MW analysis

[34] has evaluated the |pWT |-dependence of the Ai functions in RESBOS but no

systematic error was estimated.
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d3σ

dp2
Tdφd(cos θ)

∝ (1 + cos2 θ) +
A0

2
(1− 3 cos2 θ)

− A1qv sin 2θ cosφ+
A2

2
sin2 θ cos 2φ

+ A3 sin θ cosφ− A4qv cos θ

+ A5 sin2 θ sin 2φ− A6qv sin 2θ sinφ

+ A7 sin θ sinφ

= fNLO(pT , θ, φ). (5.16)

The additional angular information is implemented in the fast simulation

by constructing the Collins-Soper frame from the final state particles, and

re-weighting each event by the ratio of angular components:

wNLO (pT , θ, φ) =
fNLO (pT , θ, φ)

(1− qv cos θ)2 (5.17)

where fNLO is the angular term defined in Equation (5.16).

5.5 Detector simulation

The particles produced by the event generator are propagated through a be-

spoke fast simulation of CDF. Many millions of events need to be simulated in

order to study systematic uncertainties at the level of precision required for a

25–30 MeV/c2 measurement of the W mass. For this reason a fast parametric

model of CDF has been expanded from a previous analysis [46]. A schematic

overview of the response of CDF to particles is shown in Figure 5.7: only

charged particles are detected in the tracking systems (silicon trackers and

COT); electrons and photons produce electromagnetic showers in the CEM

which may leak into the CHA; muons leave minimal energy deposits in the

CEM and CHA, and are detected in the muon chambers (CMX, CMU and

CMP); and neutrinos are not detected at all.
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Figure 5.7: A schematic representation of the passage of particles through the detector:
neutrinos are not detected; electrons leave track hits in the tracking chambers and deposit
energy in the CEM; photons do not leave tracks and deposit energy in the CEM; and muons
leave tracks and minimal energy deposits in the CEM and CHA. The time-of-flight counter

(TOF) and magnetic solenoid are located between the COT and CEM.

5.5.1 Particle energy loss

The energy loss of particles as they pass through the detector is simulated on

a per-particle basis. Electrons are affected by bremsstrahlung induced by the

nuclei of the material in the detector volume, Møller scattering (Bhabha scat-

tering for positrons) off the electrons in the detector material, and ionisation.

An example of the amount of the energy lost from these processes is shown

in Figure 5.8 for electrons traveling through lead (the passive material in the

CEM).

The energy loss of electrons from bremsstrahlung and ionisation is simu-

lated using a model based upon GEANT4 [63] theory and cross-checked against

GEANT4 in a “test-beam” analysis. The material traversed by an electron is es-

timated using SiliMap [64], a geometric map of the material in CDF. SiliMap

is too crude for a MW analysis on its own; hence, the output of SiliMap is

adjusted to match data (see Section 5.5.4).

For every electron in the event, the total bremsstrahlung cross-section and

differential bremsstrahlung cross-section are calculated and sampled to produce

photons. For every photon in the event, pair-production cross-sections are cal-

culated and sampled to produce electron-positron pairs. The bremsstrahlung
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Figure 5.8: The sources of energy loss for electrons and positrons passing through lead.
The electrons and positrons from the weak boson decay are typically of the order of 40 GeV

which have bremsstrahlung and ionisation as the major cause of energy loss. [65]

and pair production steps are repeated for any new particles created until all

particles have been processed.

The fractional energy lost by an electron of energy E by emitting a photon

with energy, k, is defined by y = k
E

. A basic functional form describing the

bremsstrahlung cross-section is [65]:

dσ

dy
=

A

yX0NA

(
4

3
− 4

3
y + y2

)
(5.18)

where A is the atomic number of the absorbing material, NA is Avogadro’s

number, and X0 is the number of radiation lengths in the absorbing material.

This basic form breaks down as y approaches zero. At low-y, Equation (5.18)

neglects dielectric suppression and the Landau-Pomeranchuk-Migdal (LPM)

effect. The LPM effect arises from quantum interference between neighbouring

atoms which suppresses the cross-section [66].

Muons from weak boson decays have energies of the order of 40 GeV which

falls into the “Bethe” region of Figure 5.9 [65]. The mean energy loss can be

described by

−〈dE
dx
〉 = Kz2Z

A

1

β2

[
1

2
ln

2Meβ
2γ2Tmax

I2
− β2 − δ(βγ)

2

]
(5.19)
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Figure 5.9: The stopping power, −〈dE/dx〉, of copper for a muon over a large range of
momentum. The muons from weak boson decays fall in the “Bethe” regime. [65]

where Z and A are the atomic number and atomic mass of the absorbing ma-

terial and I is the mean excitation energy, β and γ are the kinematic variables

|pT |/E and (1− β2)−1/2, respectively, encountered in Section 3.2, Me is the

mass of the electron, and Tmax is the maximum kinetic energy that can be

imparted on a electron in a single collision:

Tmax =
2Meβ

2γ2

1 + 2γMe/Mµ + (Me/Mµ)2
(5.20)

and Mµ is the mass of the muon.

5.5.2 Momentum resolution

A charged particle traveling through the tracking systems has a curved trajec-

tory in the magnetic field according to Equation (2.6). The track curvature

for a particle of charge, q, and transverse momentum, pT is

C =
q

pT
. (5.21)

The momentum resolution, ∆(1/pT ), is related to the difference in curvature

between the true track curvature and the reconstructed track curvature:

∆C =

(
q

pT

)
reco.

−
(
q

pT

)
true

(5.22)
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via ∆(1/pT ) = ∆(C/q).

The momentum resolution of the simulation is obtained from W→ µν events

using cdfSim. The distribution is approximately Gaussian with a mean centred

at ∆C = 0 and a standard deviation of 4.7 × 10−4 (GeV/c)−1 [46]. The

momentum resolution obtained from cdfSim is sampled and the corresponding

∆C is applied to particles in the final state.

5.5.3 Calorimeter response

The central electromagnetic calorimeter (CEM) has an energy resolution de-

scribed by Equation (2.7) in Section 2.2.2. In addition to the resolution the

measured energy differs from the input energy due to the response of the

calorimeter which, in general, is not unity. This is assumed to be linear:

Emeas.
T = SCEM · Einput

T .

Variations in the calorimeter response arise from a number of different

sources; however, these can be accounted for by offline calibrations of the data.

The central region of a calorimeter tower can have a reduced response because

the scintillator light has a greater distance to travel thereby increasing the

amount of attenuation. The scintillators are also believed to be ageing which

induces a time-dependent response. Any residual effects remaining after the

calibration of the CEM performed by the collaboration propagate into SCEM

and κCEM.

The values of SCEM and κCEM are obtained by fitting Monte Carlo events

against Z0 → e+e− invariant mass and W → eν E/p data. These distri-

butions are sensitive to electron energy loss and photon production in flight:

bremsstrahlung is assumed to be collinear with the parent electron and is

clustered into the electromagnetic shower of the electron in the calorimeter;
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however, photons are not measured by the tracking systems and the total mea-

sured momentum associated with the electron is reduced. This gives E/p a

long tail above unity. Alternatively, electron showers may be incident toward

the edge of a tower and some of the resulting shower may be lost into uninstru-

mented regions of the detector, this causes the E/p distribution to have a tail

below unity. The best-fit SCEM and κCEM from the W→ eν E/p distribution

are determined to be SCEM = 1.01202± 0.00009 and κCEM = (0.94± 0.03)%.

5.5.4 Material scale

The amount of material traversed by an electron is obtained using the predic-

tion of SiliMapcompared with data. This affects the number of bremsstrahlung

photons produced and their energy which in turn affects the momentum mea-

sured in the tracking systems. These photons are clustered into the same

shower as the parent electron which affects the E/p distribution. In addition,

the probability of electron ionisation energy loss is also affected by the material

present. The radiation length of material returned by SiliMap is adjusted by

a scale factor, SMat, in the fast simulation. SMat is constrained by fitting to

W→ eν E/p data and the best fit SMat is determined to be 1.042± 0.004.

5.5.5 Recoil model

As previously mentioned in Section 3.2, the neutrino is inferred from the

hadronic recoil of the event, Equation (3.21):

|pνT | = −|U + plT |. (5.23)

The hadronic recoil is all the transverse energy in the calorimeter that is not

from the charged lepton and arises from a number of different sources.
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A large source of the recoil comes from gluons recoiling against the weak

boson. Initial state gluon emission from the colliding quarks imparts a trans-

verse momentum to the boson. This momentum must be conserved by the

subsequent hadronic decay of the gluons into a jet-like structure. This compo-

nent of the recoil is primarily parallel to the boson transverse momentum and

in the opposite direction.

The spectator quarks which are not part of the hard scattering may pro-

duce hadronic jets or interact with initial state gluon radiation. Multiple

interactions in the beam also contribute to the recoil. The number of multiple

interactions is proportional to the number of particles in each beam crossing;

hence, this soft component to the recoil is correlated with the instantaneous

luminosity of the colliding beams.

The recoil in Z0 events is decomposed into two directions: one parallel to

−|pZT |, U1 and one transverse to it, U2. The recoil in each of these direc-

tions simulated as a random Gaussian variable with the means and standard

deviations obtained from the following:

〈U1〉 = −P1|pZT |
ln
(
|pZT |+ P2

)
ln (15 + P2)

, (5.24)

〈U2〉 = 0, (5.25)

σ(U1) = σMB

(
P4 + P5 · |pZT |

)
, and (5.26)

σ(U2) = σMB

(
P6 + P7 · |pZT |

)
(5.27)

where P1–P7 are parameters obtained by fitting to Z0 → e+e− and Z0 →

µ+µ− data. U2 has its mean set to zero because it is predominately affected

by the soft component of the recoil from the underlying event and multiple

interactions, and should have no preferred direction in φ. σMB is a luminosity-

dependent function which parameterises the resolution of the underlying event

[46].
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The transverse momentum of the Z0 boson is an important input for the

model of the hadronic recoil and it is important to understand it before the

effect of the detector resolution, acceptance and smearing. Obtaining this true

transverse momentum distribution will be discussed in Chapter 7.
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Chapter 6

W mass systematics

As has been discussed in the previous sections, the effects of higher-order

QCD are inserted into the fast simulation manually. The uncertainty of these

effects and their contribution to the systematic uncertainty of the W boson

mass needs to be determined and is the focus of this chapter. The transverse

momentum distribution of the W boson, |pWT |, arising from initial state gluon

emission is estimated using Z0 decays. The |pWT |-dependence of the higher-

order corrections to the angular distribution of W bosons is investigated using

the DYRAD [67] and RESBOS [51] generators. In addition, the uncertainty of the

global fits used to obtain parton distribution function is propagated into the

W boson mass.

6.1 Parton density functions

One of the larger systematic errors in the measurement of the W mass MW at

the Tevatron is that arising from the uncertainty in the flavour composition of

the proton and the fraction of the (anti) proton momentum carried by quarks

and gluons, and their evolution with momentum transfer. Researchers cur-

rently use parton distribution functions (PDFs) produced by dedicated groups

obtained by global fits to appropriate experimental data.
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Two of the main collaborations producing PDFs for the particle physics

community are the US-based Coordinated Theoretical-Experimental Project

on QCD (CTEQ), a group aimed toward understanding the effect of quan-

tum chromodynamics on the standard model [68]. The other major col-

laboration is that of Martin, Stirling, Thorne, Watt and formerly Roberts

(MRS/MRST/MSTW) [69].

In recent years the PDFs have been presented with a best fit and a num-

ber of alternative fits that allow researchers to estimate the effect of the PDF

global fit uncertainty upon their own work. However, incompatibilities between

datasets — for example, in the normalisation and large χ2 deviance with re-

spect to the best fit — often mean that phenomenologists sometimes forego

rigorous statistical treatment in preference of a more pragmatic approach.

The effect of the uncertainty in parton density functions (PDFs) has be-

come increasingly important in recent years. With large numbers of W bosons

produced at the Tevatron and recorded, the relative contribution of statistical

uncertainties to the overall error diminishes, leaving the errors that only have

a weak dependence on the statistics of the data collected. The previous Run-

II measurement of MW at CDF using data with an integrated luminosity of

200 pb−1 had an uncertainty arising from uncertainties in PDFs of 11 MeV/c2

for the transverse mass fit [34]. The Run-Ib measurement at CDF using an

integrated luminosity of 84 pb−1 found a 15 MeV/c2 systematic effect from

PDFs [70]. Considering that the total errors in these published results were

48 MeV/c2 and 89 MeV/c2, respectively, the PDF uncertainty is clearly not

reducing as much as other uncertainties with increased integrated luminosity.

Hence, the uncertainties arising from PDFs are more significant and are largely

independent of statistics.
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In addition to the importance in single measurements, the contributions of

PDFs are a large common error between CDF and DØ for electroweak combi-

nations of the W boson mass and width. The recent electroweak combinations

in summer 2009 estimated a total combined uncertainty from Tevatron mea-

surements of 31 MeV/c2 on the W mass [71]. The effect of PDFs was assumed

to be entirely correlated between CDF and DØ and was 11 MeV/c2 [72, 71].

This makes the effect of parton density functions an important error to under-

stand with a goal of reducing the Tevatron MW uncertainty below 25 MeV/c2.

6.1.1 Hessian method

The general form of the χ2 function used to constrain the PDF models is a

linear combination of χ2 fits to each experiment:

χ2
global =

N∑
n

χ2
n , (6.1)

where the χ2
n is the fit between the PDF model and the experimental data

points:

χ2
n =

N∑
k=i

(
Dn,k −Mn,k

σn,k

)2

(6.2)

where Dn,k, Mn,k and σn,k are the observed data, global model prediction, and

uncertainty of the kth data point of the nth experiment, respectively.1

The χ2
global is then expanded around the minimum point where a region

of ∆χ2 is defined:

∆χ2
global ≤ T 2 , (6.3)

where T is the tolerance in the fit. If the data used in the fit were all consistent

and uncorrelated then the T 2 to obtain the 1σ uncertainty for one parameter

would be 1; however, the data used in global fits are not all consistent with

1In reality the χ2-functions can be more complicated if they are constructed to account
for correlations.
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one another demanding a larger T 2 or ∆χ2
global than expected. The size of

T 2 no longer has an a priori statistical meaning and instead is indicative of

the range of alternative global fits deemed to be acceptable. The choice of an

acceptable fit differs between CTEQ and MSTW, who choose T = 10 [73] and

T =
√

50 [74] respectively.

The Hessian matrix of the global fit is diagonalised to obtain the associated

sets of eigenvalues, ε, and eigenvectors, νi. The eigenvectors form an orthonor-

mal representation of the global fit parameter space so that a displacement in

one of the global fit parameters ai is defined as a linear sum of displacements

in the normalised eigenvector directions:

ai − a0
i =

N∑
k=1

νikskzk. (6.4)

The normalisation factors, sk, are chosen so that the sum of all the dis-

placements is no greater than the total uncertainty in the fit:
∑N

k=1 z
2
k ≤ T 2.

The quantity zk represents a displacement along the kth eigenvector.

6.1.2 Error sets

A set of alternative PDF fits, S±i , are defined that correspond only to the

influence of the ith eigenvector in the positive (S+
i ) and negative (S−i ) direc-

tions. zk(S
±
i ) is set to ±tδik where t is the displacement along the eigenvector

directions. The Hessian approach requires that the χ2 function be quadratic;

therefore, a displacement t in one of the orthogonal fit parameters increases

the T 2 by t2; hence, t ≡ T by construction. As an example error set, the first

alternative PDF set S+
1 has z(S+

1 ) = {t, 0, 0, . . . , 0}, the error in the global fit

is directed along the first eigenvector and in the positive direction. Alterna-

tively, z(S−2 ) = {0,−t, 0, . . . , 0} produces a PDF where the error is directed in
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the negative direction of the second eigenvector. 2N error sets are created in

this fashion.

In the previous generation of MSTW [75] and all CTEQ error sets, the value

of t was the same for each eigenvector and was chosen so that the uncertainty

in the error sets sufficiently encompassed the experimental error in the global

fit. The effect of an experiment on an eigenvector is described in more detail

in Section 6.1.3.

If there is an observable X(S) that depends upon PDFs then, from [76],

the total uncertainty from all of the eigenvector contributions can be shown

to be:

∆X =
1

2

T

t

√√√√ N∑
i=1

(
X(S+

i )−X(S−i )
)2
. (6.5)

For a given PDF and its associated error sets, the size of t is fixed; however,

as ∆X is linear in T it is possible to rescale ∆X to estimate the effect if T 2

were chosen differently. This makes it possible to compare the total uncertainty

obtained using CTEQ or MSTW PDF errors despite the different views on an

acceptable fit tolerance.

6.1.3 Dynamic tolerance

The method outlined in Section 6.1.1 has been improved upon for the latest

MSTW PDF sets [74]. Rather than setting a global shift t in the eigenvector

directions that form the total T 2, each eigenvector shift is extracted separately

from the data. Recalling that the total χ2-function is the combination of

individual fits to each experiment, Equation (6.1), the shape of χ2
i as zk are

varied can be used to obtain the confidence intervals for a given experiment

and eigenvector.
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Confidence intervals for specific eigenvectors can be defined by establishing

∆χ2
i ranges for each individual dataset. This ∆χ2

i range defines the maximum

ti for the eigenvector while maintaining agreement with the experimental data:

∆χ2
i <

χ2
i,0

ε50

· (εm − ε50) (6.6)

where χ2
i,0 is the χ2 using the global fit values to data from that experiment,

and εm is the χ2 that encloses the lower m percent of the χ2 distribution for

N data points in the experiment:

m

100
=

∫ εm

0

χ2
N (x) dx. (6.7)

The median of the χ2 distribution, ε50, converges upon the mean as N gets

large2; therefore, Equation (6.6) rescales the ∆χ2
i so that the global fit χ2

i,0 is

assumed to be the most likely χ2 for the N data points in the experiment. It

is necessary to define the limit in terms of the rescaled ∆χ2
i parameter because

some experiments do not agree well with the global fit and have a χ2
i,0 that is

larger than the expected χ2 for the 68% or 90% confidence interval.

Each individual dataset has different ti parameters for a given eigenvector.

MSTW pick the most constraining ti to define the 68% and 90% confidence

intervals. This approach permits that different datasets set the 68% and 90%

confidence interval and for this reason the value of ti that defines the 68%

confidence interval may not be directly related to the ti for the 90% confi-

dence interval; therefore, the relative contribution of the eigenvector cannot

be assumed to be constant for the different confidence intervals.

CTEQ also perform the same study but rather than set the eigenvector ti

contribution from the most constraining experiment shift, they use the 90%

confidence region to determine how large the eigenvector shifts should be in a

2The mean for N degrees of freedon is N , the median is approximately N
(
1− 2

9N

)3
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global sense to correspond to the 90% confidence interval from the individual

datasets. This is typically t ≡ T = 10 which contrasts with MSTW’s choice of

T =
√

50 in sets prior to MSTW2008.

6.1.4 Estimating MW shift

The error-set shifts are combined in quadrature to obtain a total MW PDF

systematic using a modified form of Equation (6.5) which corrects for cases

where both the S+
i and S−i error sets have systematic shifts in the same di-

rection (‘odd’) and a näıve difference would underestimate the contribution of

that eigenvector, Equations (6.8) and (6.9). This is possible because MW is

not an input to the PDF global fit so there is no reason to expect the MW

obtained with the best-fit PDF to be straddled by the values of MW obtained

with the extrema of the fit.

∆MW =
1

2

√√√√ N∑
i=1

δ2
i , (6.8)

δi =

{
MW (S+

i )−MW (S−i ) ‘Even’
max

(
|MW (S+

i )−MW (S0)|, |MW (S−i )−MW (S0)|
)

‘Odd’.
(6.9)

The asymmetric systematic shifts are calculated by independently adding

up the positive and the negative shifts in quadrature:

∆M+
W =

1

2

√√√√ N∑
i=1

δ2
i,+ , ∆M−

W =
1

2

√√√√ N∑
i=1

δ2
i,− , (6.10)

δi,+ = max
(
MW (S+

i )−MW (S0),MW (S−i )−MW (S0), 0
)

(6.11)

δi,− = min
(
MW (S+

i )−MW (S0),MW (S−i )−MW (S0), 0
)
. (6.12)
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6.2 Transverse momentum

As discussed in Section 5.4.1, the transverse momentum of weak bosons in

Drell-Yan events arises from the emission of gluons prior to quark-antiquark

annihilation. At the Tevatron these events predominantly occur at low-|pT |

where the prediction of perturbative QCD is unreliable and resummation is

preferred. The resummation requires the assumption of an ad hoc parameter-

isation: the BLNY functional form is used in this analysis.

6.2.1 BLNY phenomenological parameters

The description of the pT distribution is improved by constraining the phe-

nomenological input gi parameters with Z0 → e+e− and Z0 → µ+µ− data. At

Tevatron center-of-mass energies the effect of g1 and g3 is small compared with

g2; therefore, it is only possible to constrain g2 and the BLNY [60] fit values

of g1 and g3 are assumed. The BLNY functional form, Equation (5.12), has a

logarithmic relationship between g1g3 and x1x2. This ŝ-dependence explains

the insensitivity to g3 at the Tevatron where Drell-Yan events are produced

predominantly at at fixed x1x2 = MZ/ŝ. The insensitivity of g1 and g3 can be

seen in Figure 6.1 where the difference between gi− 3σ and gi + 3σ in dσ/dpT

is shown for each parameter.

6.2.2 Detector response

The effect of detector resolution and response is modelled using a matrix tech-

nique. A large statistics sample is used to generate a N × N matrix that

transforms the generator level pZT histogram of N bins, Xtrue
i , into that af-

fected by detector smearing and response effects, Xmeas
j . An element of the

matrix, Mij, is the sum of weighted events where an event in the ith generator
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Figure 6.1: The change in dσ/dpT by replacing gi with gi − 3σ and gi + 3σ for each of
the BLNY parameters. The global fit error in [60] is used for each parameter. The ratio

between gi − 3σ and gi + 3σ shows the sensitivity of each gi parameter.
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level pZT bin is found in the jth bin after smearing. The matrix is normalised

according to Equation (6.14).

Xmeas
j =

N−1∑
i=0

MijX
true
i (6.13)

N−1∑
j=0

Mij = 1 (6.14)

6.2.3 Parameter fitting

The response matrix described in Section 6.2.2 is used to quickly produce a

transverse distribution from a calculation of the pZT -dependent cross-section.

This allows for a specific choice of phenomenological parameters to be com-

pared with data. Differential cross-sections are produced for a range of g2 and

ξ. ξ is the value of αs(MZ) used to calculate the pZT -dependent cross-section

and is used as an additional parameter to constrain the pZT distribution. In all

other situations αs(MZ) is unchanged from the best-fit αs(MZ) for the parton

distribution function used.

The fit is optimised by producing a binned pZT -dependent cross-section for

a grid of g2 and ξ pairs, and a bicubic spline interpolation in each pZT bin

produces a distribution for any choice of g2 and ξ.

6.3 Angular momentum

The interplay of QCD and the angular distribution is contained in the Ai coeffi-

cients of Equation (5.16). The standard model prediction for these coefficients

has been obtained from DYRAD [67] by Strologas and Errede in [77]. The Ai

functions were only obtained for |pWT | > 20 GeV/c in [77] because of DYRAD
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is only a perturbative NLO QCD calculation and does not include resumma-

tion. As shown in Section 5.4.1, resummation is important in the low-|pWT |

region; therefore, DYRAD inadequate for use in a MW measurement because the

majority of events occur at low-|pWT |. The evolution of the function toward

zero transverse momentum has been determined. The boundary conditions at

|pWT | = 0 GeV/c are obtained by assuming the angular dependence is purely

V-A: (1− qv cos θ)2. This expands to

1− 2qv cos θ + cos2 θ (6.15)

and compared with Equation (5.16) it is obvious that A4 is 2 and all other

functions must be zero. Cubic splines are used to interpolate the Ai functions

between the values at 20 GeV/c and zero. The Ai functions are presented in

Figure 6.2.

6.3.1 Improving A0 and A4

The evolution of the cos θ term in the low-|pWT | region is improved by fitting the

relevant Ai functions against RESBOS using cos θ distributions in different |pWT |

ranges. The θ- and φ-dependent differential cross-section, Equation (5.16),

yields

d2σ

dpTd(cos θ)
∝ 1 + qv

2A4

2 + A0

cos θ +
2− 3A4

2 + A0

cos2 θ (6.16)

after integrating over the full range in φ.

The |pWT | distribution is partitioned into six ranges, each of which is fit

independently to the distribution of cos θ generated with RESBOS. The six

ranged used are: 0 ≤ |pWT | < 5 GeV/c, 5 ≤ |pWT | < 10 GeV/c, 10 ≤ |pWT | < 20

GeV/c, 20 ≤ |pWT | < 50 GeV/c and 50 ≤ |pWT | < 100 GeVc. The fit in a

specific bin is performed by generating events for a range of values in A4 with

the fast simulation and computing the corresponding χ2. A parabola is fit to
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Figure 6.2: The evolution of the Ai coefficient in pWT . (a) and (b) show the functions ob-
tained in [77], (c) and (d) show the implementation of these coefficients in the fast simulation.

In both cases the shaded regions indicate the uncertainty.
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pWT (GeV/c) A0 A4

0− 5 0.000 2.000
5− 10 0.020 1.995
10− 20 0.048 1.950
20− 30 0.130 1.825
30− 50 0.240 1.705
50− 100 0.560 1.300

Table 6.1: The best fit A0 and A4 to RESBOS in cos θ bins.

the χ2 and the minimum of the parabola is the best-fit A4. This process is

repeated to obtain the best-fit A0.

The value of g2 extracted from Z0 → e+e− and Z0 → µ+µ− data will be

presented in Chapter 8 along with the ∆MW contributions of the W transverse

momentum, the W helicity cross-section, and the uncertainties arising from

PDF error sets.
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Chapter 7

Extracting the true Z transverse
momentum

As has been discussed in Section 5.5.5, the transverse momentum of the Z0

boson, |pZT |, is a key input parameter to the parameterisation of the hadronic

recoil in W events. The recoil model is implemented before particles in the final

state are propagated through the fast simulation of CDF; therefore, knowledge

of the Z0 transverse momentum before any detector effects is desirable. In

addition, |pZT | is also used to extract the g2 parameter in the BLNY non-

perturbative functional form described in Section 5.4.1.

7.1 Smearing matrix and unfolding

The finite resolution and response of the detection systems distort the observed

distributions from the underlying true distributions. It is important to include

a module that simulates the effect of the passage of particles from the point of

generation to the point of detection.

This process can be time consuming so it is beneficial to construct a re-

sponse or smearing matrix which maps unsmeared data bins to smeared data.

Applying this matrix to generator (truth) distributions is intended to replicate
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the effect of detector resolution and acceptance effects to allow a comparison

between simulated Monte Carlo events and reconstructed data. It follows that

if the smearing matrix is inverted then the resulting object can be applied to

reconstructed data to estimate the true data without detector interference, this

is know as unfolding. The unfolded distribution allows for an easier comparison

of data between experiments.

7.1.1 Problems with unfolding

Calculating the mathematical inverse of the smearing matrix is computation-

ally intensive as the size of the matrix increases nor is it guaranteed that the

matrix is non-singular. In addition, the correlation between adjacent bins can

lead to large fluctuations in the final result that are sensitive to small changes

in the reconstructed data, and the final result can be dominated by one or two

eigenvectors of the smearing matrix.

Following Blobel [78], a smearing matrix A which maps from true data x

to the reconstructed data y, can be defined by:

Ax = y (7.1)

which can be inverted to obtain the true data from the measured data:

A−1y = x . (7.2)

A can be decomposed into a diagonal matrix of eigenvalues D and a matrix

of eigenvectors U where UTU = 1 such that

A = UDUT . (7.3)

The matrix of eigenvectors U transforms the true data x and smeared data y

into and out of a new basis:

x′ = UTx , y′ = UTy , x = Ux′ , y = Uy′ . (7.4)
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Combining Equations (7.3) and (7.4) yields:

UDUTx = y , (7.5)

Dx′ = y′ . (7.6)

Since D is a diagonal matrix with eigenvalues λi, it has an inverse matrix

where 1/λi are the elements of the leading diagonal, leading to:

D−1y′ = x′ , (7.7)

and

UTD−1Uy = x . (7.8)

The elements of the unfolded data are sensitive to small eigenvalues of the

smearing matrix as a result of the 1/λi factor. For cases where an eigenvector

is very small (λi � 1) the entire result can be dominated by the statistical

fluctuations of the reconstructed data in the transformed basis y′.

7.2 Iterative Bayesian method

One solution to the statistical fluctuation of small eigenvalues in matrix in-

version is to ignore the smaller eigenvectors and use a truncated solution.

Alternatively, matrix inversion can be avoided entirely and Bayes’ theorem

used instead.

The smearing matrix can be thought of as a function that links the prob-

ability that an event that occurs within one bin in the true distribution xi is

observed in a particular reconstructed bin yi. If an event has an initial proba-

bility of being in the ith bin P (xi) then P (yj|xi) is the conditional probability

that it will be reconstructed in a jth bin. Bayes’ theorm [79] can then be used
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to estimate the probability P (xi|yj) that an event reconstructed in the jth bin

of y is originally from the ith x bin:

P (xi|yi) =
P (yi|xi)P (xi)∑Nx

k=1 P (yj|xk)P (xk)
. (7.9)

where Nx is the number of bins in x. It should be noted that
∑Nx

k=1 P (yj|xk)

can be any value between zero and unity reflecting the possibility that some

events are not reconstructed; it is the reconstruction efficiency εi for that bin.

The fact that the total probability must sum to unity and a reconstructed

event must come from one of the possible true bins gives the constraints:

nx∑
i=1

P (xi) = 1 and (7.10)

nx∑
i=1

P (xi|jk) = 1. (7.11)

7.2.1 Iterative algorithm

D’Agostini [80] has proposed an algorithm that uses Equation (7.9) to estimate

P (xi|yi), the conditional probability that an event reconstructed in the yj bin

is from the xi true bin, from Monte Carlo events:

N̂(xi) =
1

εi

Ny∑
j=1

N(yj)P (xi|yj) (7.12)

where N(yj) is the number of events reconstructed in the yj bin, N̂(xi) is the

estimated number of events in the xi true bin, and εi is the detection efficiency

for the xi bin.

P (xi|yj) requires an assumption about the prior probability P (xi) of an

event occurring in the xi true bin. This prior probability can be improved

upon using the following estimator:

P̂ (xi) =
N̂(xi)∑nx

j=1 N̂(xj)
(7.13)
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Figure 7.1: The effect of increasing the number of iterations of the unfolding algorithm.
The greater the number of iterations, the more statistical features in the measured distri-
bution begin to dominate. Monte Carlo events with the statistical power as the data are
unfolded 1, 5 and 10 times. The parameter ∆ is the relative shift of one bin from the

corresponding true distribution.

and this improved estimate of the prior can be inserted into Equation (7.12)

and the process repeated with the number of iterations acting as a controlling

parameter.

The RooUnfold [81] ROOT module was used to implement the iterative

Bayesian unfolding method.

7.2.2 Iteration parameter

The number of iterations is used to control whether the unfolding distribution

is more biased by the Monte Carlo data used to obtain P (yj|xk) (lower num-

ber) or the measured distribution being unfolded (larger number). Ideally a

large number would be desirable but the greater the number of iterations the

more susceptible the unfolded distribution is to statistical fluctuations in the

reconstructed data (see Figure 7.1).

An iterator parameter of 1 is chosen as it produces unfolded Monte Carlo

simulation that best matches the input truth Monte Carlo.
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7.3 aT and aL kinematic variables

The transverse momentum of Z0 is an obvious parameter to unfold in order

to extract effects that are sensitive to |pZT |; however, there are alternative

variables that may perform better.

Such variables have been proposed for use in unfolding the |pZT | distribution

that are less sensitive to the lepton |pZT | resolution [82]. An axis in the rest

frame of the Z0 that is perpendicular to the φ bisector between the decaying

leptons is defined:

t̂ =
paT − pbT
|paT − pbT |

(7.14)

where paT and pbT are the transverse momenta of the two leptons. The trans-

verse momentum of the Z0 is decomposed into components perpendicular (aZT )

and parallel (aZL) to t̂:

aZT =

{
|(paT + pbT )× t̂| = |pZT × t̂| if ∆φ(paT ,p

b
T ) ≥ π

2

|paT + pbT | = |pZT | if ∆φ(paT ,p
b
T ) < π

2

(7.15)

and

aZL = (paT + pbT ) · t̂ = |pZT · t̂| . (7.16)

The aZT and aZL parameters are believed to be less sensitive to the momentum

resolution of a detector and use the angular resolution which can be more

sensitive. A toy Monte Carlo study found that aZT and aZL are more sensitive to

changes in g2 when the momentum resolution of the detector is significant, for

example, ∆(1/pT ) = 0.003 (GeV/c)−1; however, |pZT | has a greater sensitivity

when the momentum resolution is smaller, i.e. ∆(1/pT ) = 0.001 (GeV/c)−1

[82]. The sensitivity of aZT and aZL in determining g2 will be compared with pZT

in Chapter 8.
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7.4 Background subtraction and unfolding

The background shapes defined in Section 7.7 are subtracted from data distri-

butions prior to the unfolding algorithm being used to reconstruct the distribu-

tion before detector smearing and acceptance. One iteration of the D’Agostini

algorithm is used.

7.5 Uncertainty due to iterative method

The systematic effect induced by the iterative Bayesian method was estimated

using 250 pseudo-experiments. Each pseudo-experiment was generated to have

approximately the same statistical power as the Z0 → e+e− sample after cuts.

The smearing matrix was generated using Monte Carlo events with a nomi-

nal choice of BLNY parameters and the pseudo-experiments with a different

choice. For each pseudo-experiment the reconstructed distribution is unfolded

and compared bin-by-bin with the known true distribution. For each bin a

relative error is constructed for a specific pseudo-experiment:

∆i =
N test
i −Nnom.

i

Nnom.
i

(7.17)

where N test
i and Nnom.

i are the sum of weights in the ith bin of the histograms

for the unfolded pseudo-experiment and nominal true distribution, respec-

tively. Both distributions are normalised to unity.

The mean of all 250 ∆i is assumed to be the systematic bias in the unfolding

technique for each of the distributions of interest. The mean is chosen because

the size and sign of ∆i will fluctuate as a result of the finite statistics in the

measured distribution being unfolded, but any leftover effect cannot be a result

of statistical fluctuations and is assumed to be a systematic effect induced by

the unfolding algorithm. The standard deviation of the 250 ∆i shifts is taken
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as the error on each bin induced by the finite statistics of the data sample

being unfolded. The mean and standard deviation distributions are shown in

Figure 7.2.

7.6 Detector simulation effects

The statistical and systematic error of the unfolding algorithm has been dis-

cussed in the previous section. Next the systematic effect of detector effects

will be considered.

The control parameters of the fast simulation used to train the unfolding

matrix are varied within their error to estimate the corresponding effect on the

unfolded distributions. The smearing matrices and a comparison between the

true and measured distributions are shown in Figure 7.3 and Figure 7.4.

7.6.1 Calorimeter response

The best fit SCEM and κCEM are SCEM = 1.01202 ± 0.00009 and κCEM =

(0.94 ± 0.03)%. Monte Carlo events were generated for the lower edge and

upper edge of these parameters. These events were used to create smearing

matrices which were then used to unfold nominal pseudo-data. The standard

deviation of all the bin deviations, assuming that the mean of the shifts is zero,

is assumed to be the systematic uncertainty on the unfolded distribution as a

result of SCEM uncertainty. The shifts are shown in Figures 7.5–7.10 with the

dashed line representing the systematic uncertainty.

SCEM is assumed to have a systematic uncertainty of 0.11% on the pZT

distribution and κCEM has a 0.12% effect. The aZT distribution has a systematic

uncertainty of 0.23% as a result of SCEM uncertainty and 0.20% from κCEM.

The aZL distribution has a systematic uncertainty of 0.07% as a result of SCEM

uncertainty and 0.06% from κCEM.
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Figure 7.2: The mean and standard deviation of the shifts in each bin from the unfolding
algorithm using 250 pseudo-experiments. ∆i, the relative shift in the ith bin is estimated for
each pseudo-experiment where the mean ∆i is the systematic error induced by the algorithm

in that bin and the standard deviation is the statistical error.
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Figure 7.3: The smearing matrices for (a) pZT , (b) aZT and (c) aZL .
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Figure 7.4: The true distribution of training events compared with the measured or
smeared distributions that are reconstructed.
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Figure 7.5: The relative error on an unfolded pZT distribution incurred by adjusting the
SCEM parameter by one standard deviation. The standard deviation of the shifts is marked

by the dashed line.
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Figure 7.6: The relative error on an unfolded aZT distribution incurred by adjusting the
SCEM parameter by one standard deviation. The standard deviation of the shifts is marked

by the dashed line.
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Figure 7.7: The relative error on an unfolded aZL distribution incurred by adjusting the
SCEM parameter by one standard deviation. The standard deviation of the shifts is marked

by the dashed line.
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Figure 7.8: The relative error on an unfolded pZT distribution incurred by adjusting the
κCEM parameter by one standard deviation. The standard deviation of the shifts is marked

by the dashed line.
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Figure 7.9: The relative error on an unfolded aZT distribution incurred by adjusting the
κCEM parameter by one standard deviation. The standard deviation of the shifts is marked

by the dashed line.
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Figure 7.10: The relative error on an unfolded aZL distribution incurred by adjusting the
κCEM parameter by one standard deviation. The standard deviation of the shifts is marked

by the dashed line.
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Figure 7.11: The relative error on an unfolded pZT distribution incurred by adjusting the
SMat parameter by one standard deviation. The standard deviation of the shifts is marked

by the dashed line.

7.6.2 Material scale

The amount of material encountered by electrons as they pass through the

detector is obtained from SiliMap [64] previously discussed in Section 5.5.4.

This amount of material returned by SiliMap controls the probabilities of

bremsstrahlung and electron ionisation which results in the upper tail of the

E/p distribution. The response of SiliMap is scaled so that the Monte Carlo

E/p distribution matches data. The scale parameter, SMat, obtained is 1.042±

0.004. Response matrices SMat − σ and SMat + σ are generated and nominal

smeared Monte Carlo is unfolded. The shifts relative to nominal true Monte

Carlo are shown in Figures 7.11–7.13.

The systematic contribution of the material scale uncertainty on the un-

folded pZT , aZT and aZL distributions are 0.12%, 0.42% and 0.07%, respectively.

7.7 Background processes

An estimated (0.85±0.22)% of Z0 bosons produced at the Tevatron and recon-

structed by CDF are from an diffractive collision [83]. In a fraction of inelastic
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Figure 7.12: The relative error on an unfolded aZT distribution incurred by adjusting the
SMat parameter by one standard deviation. The standard deviation of the shifts is marked

by the dashed line.
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Figure 7.13: The relative error on an unfolded aZL distribution incurred by adjusting the
SMat parameter by one standard deviation. The standard deviation of the shifts is marked

by the dashed line.
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Figure 7.14: The diffractive production of Z0 bosons. The proton emits a Pomeron, P,
and remains intact; the Pomeron decays into a quark-antiquark pair. The quark (antiquark)

from the Pomeron annihilates with an antiquark (quark) from the antiproton.

pp̄ collisions a strongly-interacting colour singlet object, the Pomeron, is emit-

ted from the proton or antiproton which decays into a quark-antiquark pair

which interact with quarks from the other hadron, Figure 7.15. These Z0s are

not modelled by the fast simulation so an estimate of this background is added

to fast simulation Monte Carlo prior to fitting to data in Section 6.2.3. It is

subtracted from the data before unfolding.

The shape of the diffractive Z0 background is estimate by fitting to cdfSim

Monte Carlo events. A Landau distribution is used to describe |pZT |, and expo-

nentials are used to describe aZT and aZL . The parameterisations are presented

in Figure 7.15.

A number of electroweak processes can form a background to Z0 → e+e−

decays where dileptons are misidentified as an electron-positron pair. The

acceptance and efficiency of the detector is obtained from cdfSim Monte Carlo

samples. The number of expected events can be estimated using

Nevents = L · σ · εA ·BR (7.18)

where L is the integrated luminosity of the corresponding data, σ is the pro-

duction cross-section for the process, ε is the the efficiency of reconstructing an

electron-positron pair, A is the detector acceptance, and BR is the branching
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Figure 7.15: The diffractive Z0 background from Monte Carlo and fitted parameterisation
(shaded area).
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ratio for the process into the final state. To obtain a fractional background,

NBG/Nsignal, the integrated luminosity is the same; hence

NBG

Nsignal

=
σBG

σpp̄→Z

(εA)BG

(εA)signal

BRBG

BRsignal

. (7.19)

The contribution of Z0 → µ+µ−, Z0 → τ+τ−, W → eν, W → µν, and

W → τν to the fractional background of Z0 → e+e− signal is estimated using

cdfSim Monte Carlo. No significant background is observed.

There are many hadronic processes occurring at CDF as a result of the large

cross-section for QCD process compared with weak boson production. QCD

events with two back-to-back jets can be misidentified as an electron and pass

selection and identification cuts. The size of this background for electron-

positron pairs where both leptons are in the central region has been estimated

as (0.24± 0.03)% [84]. The size of this background is approximately the same

order as the uncertainty in the diffractive Z0 background and is assumed to have

the same signal-like shape obtained in Figure 7.15. The background processes

are added in quadrature to give (1.09± 0.22)% as the total background.

The systematic uncertainty arising from the error in the background frac-

tion is obtained by varying the background fraction by one standard deviation

before unfolding the distributions. Figure 7.16 to Figure 7.18 show the the

systematic shift in each bin and the dashed line is the standard deviation of

the shifts. The shift in each bin is assumed to be the background systematic

uncertainty.

7.8 Total systematic uncertainty

Many sources of uncertainty on the unfolded distributions have been discussed.

The systematic and statistical uncertainties arising from the unfolding method
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Figure 7.16: The relative error on an unfolded pZT distribution incurred by adjusting the
background fraction by one standard deviation. The standard deviation of the shifts is

marked by the dashed line.

appear to dominate the uncertainty. Figure 7.19 shows the systematic uncer-

tainty due to the unfolding method as the nominal of the shift from zero.

The statistical uncertainty of the unfolding method is shown as as the first

error bar. The contribution of all the other systematic uncertainties are added

in quadrature to the statistical uncertainty as shown as the second error bar

(Figure 7.20 is the same as Figure 7.19 but the additional systematic contribu-

tions are scaled by 10). The statistical error clearly dominates these systematic

uncertainties so they will are neglected. The results in Chapter 8 will only use

the statistical error and the unfolding systematic error added in quadrature.
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Figure 7.17: The relative error on an unfolded aZT distribution incurred by adjusting the
background fraction by one standard deviation. The standard deviation of the shifts is

marked by the dashed line.
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Figure 7.18: The relative error on an unfolded aZL distribution incurred by adjusting the
background fraction by one standard deviation. The standard deviation of the shifts is

marked by the dashed line.
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Figure 7.19: The statistical uncertainty of the unfolding method on the unfolded distri-
butions is shown with the systematic shift of the unfolding method. The additional error
bar shows the contribution of the CEM and material scale systematic uncertainties and the

background fraction uncertainty added in quadrature.



7.8 Total systematic uncertainty 96

(Z) [GeV/c]
T

p
0 5 10 15 20 25 30

-0.15

-0.1

-0.05

0

0.05

0.1

(a) 〈∆〉(pZT )

(Z) [GeV/c]Ta
0 2 4 6 8 10 12 14 16 18 20

-0.1

-0.05

0

0.05

0.1

0.15

0.2

(b) 〈∆〉(aZT )

(Z) [GeV/c]La
0 2 4 6 8 10 12 14 16 18 20

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

(c) 〈∆〉(aZL)

Figure 7.20: The statistical uncertainty of the unfolding method on the unfolded distri-
butions is shown with the systematic shift of the unfolding method. The additional error
bar shows the contribution of the CEM and material scale systematic uncertainties and the

background fraction uncertainty all scaled by a factor of 10 and added in quadrature.
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Chapter 8

Estimation of the systematic
contributions to the W mass

The systematic effects of parton distribution functions and next-to-leading

order quantum chromodynamics on the mass of the W boson are presented

in the following sections. The determination of the systematic shifts make

extensive use of a template fitting approach. Fast simulation Monte Carlo

events are produced and templates are created for a range of input MW values.

The change in input MW is propagated into the templates by re-weighting the

events by the change in the Breit-Wigner weight (Section 5.1):

1

(ŝ−M2
W )

2
+ Γ2

WM
2
W

. (8.1)

The templates are fit against pseudo-data distributions containing the effect

being tested and the shift in the fitted MW from the nominal MW (80403

MeV/c2) is assumed to be the systematic shift. 40 million Monte Carlo events

are used in the templates which implies that the statistical uncertainty is 6

MeV/c2; however, the events in each template are identical such that the

extracted shifts are real and not statistical.
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8.0.1 Parton density functions

The total symmetric and asymmetric systematic shifts for all the eigenvec-

tors in MSTW2008 NLO and CTEQ6.6 are presented in Tables 8.1 and 8.2,

respectively. For comparison with previous MW analyses, the mass shifts ob-

tained using the older CTEQ6M and CTEQ6.1 PDF error sets are shown in

Table 8.3. A common error for the electron and muon channels is assumed and

the larger of the two is taken as the error. The systematics on MW obtained

using MW
T , plT and /ET fits are: 10 MeV/c2, 9 MeV/c2 and 11 MeV/c2 using

MSTW2008 NLO at 68% confidence interval (C.I.); 22 MeV/c2, 19 MeV/c2 and

24 MeV/c2 using MSTW2008 NLO at 90% C.I.; and 25 MeV/c2, 22 MeV/c2

and 26 MeV/c2 using CTEQ6.6 (90% C.I.).

The 1σ systematic shifts on MW for CTEQ6.6 are estimated by recognising

that the global tolerance for CTEQ6.6 using the 68% C.I. limits of the exper-

imental datasets for T68% does not necessarily equal 6.251 if T90% is 10. This

effect is observed in the MSTW 2008 systematic shifts where the 90% C.I. sys-

tematic is more than twice as large as the corresponding 68% C.I. systematic

(R(M90
M68

) > 2) when it is expected to be 1.6 . Three procedures to estimate the

CTEQ6.6 1σ systematic are used:

(i) scale the CTEQ 90% C.I. error by the corresponding MSTW2008 68%

C.I. to MSTW2008 90% C.I. ratio, R(M68
M90

);

(ii) scale the CTEQ 90% C.I. error by the average MSTW2008 68% C.I. to

MSTW2008 90% C.I. ratio over all the fit variables for the whole channel,

〈R(M68
M90

)〉;
1The figure of 6.25 is obtained by taking the value of 10 and dividing it by the expected

ratio of 1.6.
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(iii) scale the MSTW2008 68% C.I. error by the average CTEQ 90% C.I. to

MSTW2008 90% C.I. ratio over all the fit variables for the whole channel,

〈R( C90
M90

)〉.

The largest of these three estimates is taken as the 1σ systematic shift

using CTEQ6.6 and is found to be 12 MeV/c2, 10 MeV/c2 and 12 MeV/c2 for

the MW
T , plT and /ET fits, Table 8.4.

The central values obtained with MSTW2008 NLO and CTEQ6.6 differ by

8 MeV/c2 in the electron channel and 4 MeV/c2 in the muon channel for the

MW
T fit, both within the uncertainty arising from the MSTW (10 MeV/c2) and

CTEQ (12 MeV/c2) error-sets.

The eigenvectors inducing the largest shifts in MW in the MSTW2008 NLO

set are those numbered 7, 10, 12 and 14. These eigenvectors are largely dom-

inated by uncertainties in the valence d quark distribution, dv (eigenvectors

7, 10 and 14) and the d̄ − ū distributions (eigenvector 12). Future improve-

ments in the understanding of lepton and W charge asymmetry may improve

this systematic in the future but difficulties in obtaining consistent fits to re-

cent Tevatron asymmetry data may hamper efforts to further constrain the dv

uncertainty [85].

MSTW have also produced NNLO versions of the MSTW2008 PDF sets.

The shifts in MW obtained by re-weighting the best-fit NLO pseudo-data with

the best-fit NNLO are shown in Table 8.5. The systematic uncertainties are 6.0

MeV/c2, 4.5 MeV/c2 and 6.5 MeV/c2 for the MW
T , plT and /ET fits, respectively.

This is an incomplete study because NNLO Monte Carlo generators should also

be used to include the effect of the NNLO QCD matrix element calculation.

NNLO corrections to weak boson production [86] has been available for a num-

ber of years, and there are calculations that predict experimental observables
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Process Fit 68% C.I. 90% C.I. R
(
M90
M68

)

W→ eν

MW
T

10.2 21.9 2.15
+9.4
−12.4

+18.6
−29.1

1.98
2.34

peT
8.9 19.3 2.17

+8.3
−10.9

+16.4
−25.5

1.98
2.34

/ET
11.2 24.1 2.15
+10.4
−13.5

+20.6
−31.9

1.98
2.36

W→ µν

MW
T

10.0 21.5 2.15
+9.2
−12.2

+18.2
−28.7

1.98
2.35

pµT
8.6 18.4 2.14

+7.9
−10.4

+15.6
−24.4

1.97
2.35

/ET
11.0 23.8 2.16
+10.2
−13.4

+20.3
−31.5

1.99
2.35

Table 8.1: The symmetric and asymmetric systematic shifts in MW for all the eigenvectors
for MSTW2008 NLO PDFs. The ratio, R(M90

M68 ), of the 90% C.I. error to the 68% C.I. error
are shown.

Process Fit CTEQ6.6 MSTW 90% R
(
C90
M90

)

W→ eν

MW
T

24.7 21.9 1.13
+23.0
−28.3

+18.6
−29.1

1.24
0.97

peT
21.5 19.3 1.11
+20.0
−24.8

+16.4
−25.5

1.22
0.97

/ET
25.8 24.1 1.07
+23.9
−29.6

+20.6
−31.9

1.16
0.93

W→ µν

MW
T

24.1 21.5 1.12
+22.4
−27.9

+18.2
−28.7

1.23
0.97

peT
20.3 18.4 1.10
+18.9
−23.5

+15.6
−24.4

1.21
0.96

/ET
26.3 23.8 1.11
+24.5
−30.1

+20.3
−31.5

1.21
0.96

Table 8.2: The symmetric and asymmetric systematic shifts in MW for all the eigenvectors
in CTEQ6.6 PDFs. MSTW2008 NLO at 90% C.I. is shown for comparison.
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Process Fit CTEQ6M CTEQ6.1 CTEQ6.6

W→ eν

MW
T

24.8 24.8 24.7
+31.9
−23.0

+31.9
−23.0

+23.0
−28.3

peT
21.4 21.5 21.4
+27.5
−19.8

+27.5
−19.8

+20.0
−24.8

/ET
26.3 26.3 25.8
+33.0
−24.6

+33.4
−24.6

+23.9
−29.6

W→ µν

MW
T

23.4 23.8 24.1
+30.6
−21.0

+30.9
−21.9

+22.4
−27.9

peT
19.4 19.7 20.3
+25.2
−17.6

+25.6
−18.0

+18.9
−23.5

/ET
25.9 26.9 26.3
+33.6
−23.4

+34.6
−24.9

+24.5
−30.1

Table 8.3: The symmetric and asymmetric systematic shifts in MW for all the eigenvectors
in CTEQ6M, CTEQ6.1 and CTEQ6.6 PDFs.

Process Fit R(M68
M90

) 〈R(M68
M90

)〉 〈R( C90
M90

)〉 (i) (ii) (iii)

W→ eν
MW

T 2.15−1

2.16−1 1.10
11.5 11.5 11.3

peT 2.17−1 9.9 10.0 9.9
/ET s 2.15−1 12.0 12.0 12.4

W→ µν
MW

T 2.15−1

2.15−1 1.11
11.2 11.2 11.1

pµT 2.14−1 9.5 9.4 9.6
/ET 2.16−1 12.3 12.3 12.3

Table 8.4: The specific values used to estimate the 1σ systematic shift in MW for CTEQ6.6
PDFs. The three estimates are denoted as (i), (ii) and (iii) and show the result in MeV/c2

of ∆MC90
W · R(M68

M90 ), ∆MC90
W · 〈R(M68

M90 )〉 and ∆MM68
W · 〈R( C90

M90s )〉, respectively. The largest
of (i), (ii) or (iii) is chosen as the 1σ systematic for that leptonic process and fit.
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Process Fit ∆MW

W→ eν
MW

T 6.1
peT 4.8
/ET 6.4

W→ µν
MW

T 6.0
pµT 4.3
/ET 6.6

Table 8.5: The systematic shifts in MeV/c2 incurred by re-weighting pseudo-data events
generated using the best-fit MSTW2008 NLO with MSTW2008 NNLO.

such as the rapidity of Z0 bosons at NNLO [87] but these calculations have

not been resummed in the the low-pWT region.

While the effect of NNLO matrix element calculations and the correlation

with NNLO PDF sets has not been explicitly determined in this analysis,

there are expected to be cancellations which implies that the systematic error

obtained by replacing a NLO PDF set with a NNLO PDF set may be an

overestimate.
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Figure 8.1: The observed shift for MW in MeV/c2 by fitting Monte Carlo pseudo-data
against templates generated with the nominal PDF set using the 68% confidence interval
MSTW 2008 NLO set. The observed shift in the electron and muon channels is shown for

the S+
k and S−k for each eigenvector, k.
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Figure 8.2: The observed shift for MW in MeV/c2 by fitting Monte Carlo pseudo-data
against templates generated with the nominal PDF set using the 90% confidence interval
MSTW 2008 NLO set. The observed shift in the electron and muon channels is shown for

the S+
k and S−k for each eigenvector, k.
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Figure 8.3: The observed shift for MW in MeV/c2 by fitting Monte Carlo pseudo-data
against templates generated with the nominal PDF set using the CTEQ6.6 set. The observed
shift in the electron and muon channels is shown for the S+

k and S−k for each eigenvector, k.
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Figure 8.4: The observed shift for MW in MeV/c2 by fitting Monte Carlo pseudo-data
against templates generated with the nominal PDF set using the CTEQ6M set. The observed
shift in the electron and muon channels is shown for the S+

k and S−k for each eigenvector, k.
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Figure 8.5: The observed shift for MW in MeV/c2 by fitting Monte Carlo pseudo-data
against templates generated with the nominal PDF set using the CTEQ6.1 set. The observed
shift in the electron and muon channels is shown for the S+

k and S−k for each eigenvector, k.
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8.0.2 W polarisation and angular distribution

The effect of the uncertainty in the Ai coefficients is used to estimate the

systematic error in the modelling of the W angular distribution. The error

bands obtained in [77] for A1–A3 and A5–A7 are used. Each Ai function

is replaced in the fast simulation by Ai + 20σAi
and Ai − 20σAi

and each

event is re-weighted by the change using Equation (5.16). Each reweighted

pseudo-data sample is fit with nominal templates and the respective shifts

taken as the systematic effect for that coefficient. None of the tested coefficients

induced a 20σ shift greater than 5 MeV/c2 in either of the MW
T , plT or /ET fits.

Uncertainties in A1–A3 and A5–A7 functions are therefore assumed to have a

negligible systematic contribution.

The systematic effect of the A0 and A4 uncertainty is estimated by re-

weighting Monte Carlo events to match the cos θ distributions obtained from

RESBOS [51]. The shift in the fitted MW incurred is taken as the systematic

error as a result of tuning the |pWT | evolution of the A0 and A4 functions.

Identical shifts in both the electron and muon channels of 3 MeV/c2, 1 MeV/c2

and 4 MeV/c2 for the MW
T , peT and /ET fits, respectively, are obtained.

8.0.3 W transverse momentum

The fit to both Z0 → e+e− and Z0 → µ+µ− decays give g2 = 0.721±0.018 GeV2

and ξ = 0.117± 0.001 with a combined χ2/ndf of 139.3/116. The correlation

between the two parameters is −0.71. The sub-fit χ2/ndf are 75.1/58 and

64.2/58 for Z0 → e+e− and Z0 → µ+µ− data, respectively. As cross-checks,

constraining the fit parameters using only Z0 → e+e− data gives g2 = 0.729±

0.042 GeV2 and ξ = 0.117±0.001 with a χ2 fit to Z0 → e+e− (Z0 → µ+µ−) data

of 74.8/57 (65.3/57). Constraining the fit parameters using only Z0 → µ+µ−
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data gives g2 = 0.718 ± 0.027 GeV2 and ξ = 0.117 ± 0.001 with a χ2 fit to

Z0 → µ+µ−(Z0 → e+e−) data of 64.1/57 (75.4/57).

The effect of fixing ξ to the PDF set value of αs(MZ) is shown in Figure 8.7.

The fit to both Z0 → e+e− and Z0 → µ+µ− data with ξ fixed gives g2 =

0.623 ± 0.013 GeV2 with a combined χ2/ndf of 180.1/117. The smaller g2

uncertainty indicated that fixing ξ does not allow enough flexibility to describe

the uncertainty in the Z0 data: changes in g2 do not affect the perturbative

QCD calculation and have a reduced effect in the tail of the distribution where

perturbative QCD dominates the resummed contribtion. This demonstrates

the g2-ξ correlation where a higher value of ξ forces a lower value of g2. The

best description of the data is obtained using ξ = 0.117 which is consistent

with the world average αs(MZ) = 0.1184 ± 0.0007 [88] but lower than the

nominal value of the PDF set.

To estimate the systematic uncertainty on MW arising from the uncertainty

in g2 and ξ, Equation (8.2) is used to re-weight Monte Carlo events. Each of

the free parameters in the pZT fit is perturbed by 1σ in turn and the change in

the pT shape is applied as a corrective weight. The change in the shape of the

rapidity re-weighting functions, Equations (5.13) and (5.14), induced by the

shift in g2 and ξ is also applied as a corrective weight:

w =

dσ
dpT

(g2 = g0
2 ±∆g2, ξ = ξ0 + ∆ξ)

dσ
dpT

(g2 = g0
2, ξ = ξ0)

. (8.2)

The distributions of re-weighted events are fit using nominal templates and

the change in the fitted MW is taken as the systematic shift for that parame-

ter. Since /ET is determined from plT and U where U is parameterised in terms

of pWT , the /ET distribution is affected by the true pWT and the recoil model.

In order to ascertain only the sensitivity to the underlying pWT , the transverse
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Process Fit (g2 −∆g2) (g2 + ∆g2) (ξ −∆ξ) (ξ + ∆ξ)

W→ eν

MW
T −5.2 5.2 −2.9 3.0
peT −5.8 5.7 −4.3 4.4

(peT )t −5.9 5.9 −4.2 4.3
pνT −6.5 6.4 −4.6 4.6
/Enr
T −6.3 6.2 −4.7 4.8
/ET −14.1 13.9 −8.1 8.6

W→ µν

MW
T −5.0 4.9 −2.6 2.7
pµT −5.7 5.6 −4.3 4.4

(pµT )t −5.8 5.8 −4.3 4.3
pνT −7.1 7.0 −5.2 5.3
/Enr
T −6.9 6.8 −5.3 5.3
/ET −13.4 13.2 −7.7 7.8

Table 8.6: The values of MW in MeV/c2 obtained using the different input g2 and ξ. The
shifts are obtained by fitting nominal fast simulation Monte Carlo to pseudo-data generated
with the tested parameter perturbed by one standard deviation of the error obtained in the

Z0 fit.

momentum of the neutrino in the generator before smearing effects is used as a

fit variable, pνT . The ratio of true charged lepton transverse momentum, (plT )t,

and measured charged lepton transverse momentum, plT , is used to estimate

/ET without the effect of the recoil where /Enr
T = pνT · plT/(pT )t. The values ob-

tained are shown in Table 8.6. The shifts for the two parameters are combined

according to

∆MW (g2-ξ) =

√
(∆MW (g2))2 + (∆M2

W (ξ))
2

+ ρ∆MW (g2)∆MW (ξ) (8.3)

in the electron channel giving ∆MW of 4.9 MeV/c2, 5.8 MeV/c2 and 6.4

MeV/c2 for the MW
T , peT and /Enr

T fits, respectively. The systematics in the

muon channel are 4.7 MeV/c2, 5.6 MeV/c2 and 7.0 MeV/c2. In the follow-

ing it is assumed that the electron and muon systematic uncertainties are the

same.

The effect corresponding to the uncertainty in g1 and g3 is estimated using

the BLNY fit uncertainties, Table 5.1, using the same method as used to es-
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timate the effect of g2 and ξ. Adding the shifts for g1 and g3 in quadrature2,

the 1σ systematics are 2.5 MeV/c2, 2.7 MeV/c2 and 3.2 MeV/c2 for the MW
T ,

plT and /Enr
T fits, respectively.

The electron and muon channel g2-ξ errors are combined and the g1 and g3

errors are added in quadrature. This gives a final systematic of 5.4 MeV/c2,

6.4 MeV/c2 and 7.6 MeV/c2 for the MW
T , plT and /Enr

T fits as a result of the

finite Z0 statistics (and BLNY data) used to tune the pZT and pWT distributions.

8.1 True Z0 distributions

The determination of g2 in the previous section used a smearing matrix to

produce measured distributions which were compared with data. The following

section will use the unfolded data to extract g2 using truth distributions. If the

unfolding is robust then the extracted values of g2 should agree. In addition,

the aZT and aZL distributions will be used to compare the sensitivity of each in

determining g2 with the pZT distribution.

The unfolded pZT , aZT and aZL distributions are presented in Tables 8.7–8.8

and the training data is shown in Figure 7.4. The statistical and systematic

errors arising from the unfolding method for each bin have been added in

quadrature.

The fast simulation is used to produce generator-level events with the

BLNY global best fit parameters and g2 = 0.66 GeV2. These events are

re-weighted to produce template distributions for a 0.60–0.80 GeV2 range in

g2 with a 0.02 GeV2 step size and ξ fixed to 0.117. A χ2-test is used to deter-

mine the goodness-of-fit for each generator-level distribution to the unfolded

2The g1 and g3 parameters are correlated in the BLNY global fit but no correlation
coefficient is presented in the paper. A previous global fit presents g1-g2, g1-g3 and g2-g3
ellipses which reveals that g1 and g3 are anti-correlated so the g1-g3 systematic is likely an
overestimate.
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pZT
1
σ
dσ
dpZ

T

0.5 (0.027± 0.003)
1.5 (0.073± 0.003)
2.5 (0.096± 0.003)
3.5 (0.097± 0.003)
4.5 (0.087± 0.003)
5.5 (0.075± 0.002)
6.5 (0.065± 0.002)
7.5 (0.056± 0.002)
8.5 (0.049± 0.002)
9.5 (0.043± 0.001)

pZT
1
σ
dσ
dpZ

T

10.5 (0.038± 0.001)
11.5 (0.034± 0.001)
12.5 (0.031± 0.001)
13.5 (0.027± 0.001)
14.5 (0.024± 0.001)
15.5 (0.021± 0.002)
16.5 (0.019± 0.001)
17.5 (0.017± 0.001)
18.5 (0.016± 0.001)
19.5 (0.014± 0.001)

pZT
1
σ
dσ
dpZ

T

20.5 (0.013± 0.001)
21.5 (0.012± 0.001)
22.5 (0.011± 0.001)
23.5 (0.010± 0.001)
24.5 (0.009± 0.001)
25.5 (0.008± 0.001)
26.5 (0.008± 0.001)
27.5 (0.007± 0.001)
28.5 (0.007± 0.001)
29.5 (0.006± 0.001)

Table 8.7: The unfolded pZT distribution after subtracting background and using one iter-
ation of the unfolding algorithm.

aZT
1
σ
dσ
daZ

T

0.5 (0.165± 0.005)
1.5 (0.149± 0.004)
2.5 (0.120± 0.004)
3.5 (0.099± 0.003)
4.5 (0.078± 0.002)
5.5 (0.063± 0.002)
6.5 (0.053± 0.002)
7.5 (0.045± 0.002)
8.5 (0.036± 0.001)
9.5 (0.033± 0.001)

aZT
1
σ
dσ
daZ

T

10.5 (0.028± 0.003)
11.5 (0.024± 0.003)
12.5 (0.020± 0.001)
13.5 (0.017± 0.001)
14.5 (0.015± 0.001)
15.5 (0.013± 0.001)
16.5 (0.012± 0.001)
17.5 (0.011± 0.001)
18.5 (0.009± 0.001)
19.5 (0.008± 0.001)

Table 8.8: The unfolded aZT distribution after subtracting background and using one iter-
ation of the unfolding algorithm.

aZL
1
σ
dσ
daZ

L

0.5 (0.144± 0.004)
1.5 (0.134± 0.004)
2.5 (0.116± 0.003)
3.5 (0.096± 0.003)
4.5 (0.079± 0.002)
5.5 (0.066± 0.002)
6.5 (0.055± 0.002)
7.5 (0.047± 0.001)
8.5 (0.040± 0.001)
9.5 (0.035± 0.002)

aZL
1
σ
dσ
daZ

L

10.5 (0.031± 0.002)
11.5 (0.027± 0.002)
12.5 (0.024± 0.001)
13.5 (0.021± 0.001)
14.5 (0.019± 0.001)
15.5 (0.017± 0.001)
16.5 (0.015± 0.001)
17.5 (0.013± 0.001)
18.5 (0.012± 0.001)
19.5 (0.011± 0.001)

Table 8.9: The unfolded aZL distribution after subtracting background and using one iter-
ation of the unfolding algorithm.
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Z0 → e+e− data. A quadratic fit to the χ2 scan was used to estimate the best

fit value of g2. This is repeated for the aZT and aZL distributions.

The χ2 scans and closest g2 temaplates are presented in Figures 8.8–8.9.

The best fit g2 values are 0.733± 0.038 GeV2, 0.715± 0.071 GeV2 and 0.684±

0.073 GeV2 for the pZT , aZT and aZL distributions, respectively. The pZT distribu-

tion is more sensitive to changes in g2 than the aZT and aZL distribution. This

is not unexpected considering the results of the toy study in [82] where pZT was

shown to have a greater sensitivity for ∆(1/pT ) ∼ 0.001 (GeV/c)−1 which is

the case for CDF.

Recently the BLNY phenomenological model has been adjusted by Kony-

chev and Nadolsky (KN) to improve its description of low ŝ data and the

authors have performed a new global fit including the low-energy data [89].

The new model is:

W̃NP
NK (b) = exp

(
−a1 − a2 ln

(
Q

2Q0

)
− a3 ln (100 · x1x2)

)
b2 (8.4)

which is similar to BLNY only this parameterisation removes the explicit cor-

relation between g1 and g3. The new best fit is a1 = 0.201 ± 0.011 GeV2,

a2 = 0.184± 0.018 GeV2 and a3 = −0.026± 0.007 GeV2.

Fast Monte Carlo templates are generated over the same 0.60–0.80 GeV2

range in g2 ≡ a2 as before. ξ is fixed to the value determined by the PDF set

but the new values of g1 and a3 in the KN global fit are used. The results are

presented in Figures 8.11–8.13 and the best-fit g2 obtained are 0.699 ± 0.035

GeV2, 0.696± 0.066 GeV2 and 0.684± 0.068 GeV2 for the pZT , aZT and aZL fits

respectively.

Interestingly, the value of g2 does not agree with the KN global fit but it has

already been shown that the sensitivity of pZT to changes in g1 and g1g3 ≡ a3
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at the Tevatron is low; therefore, it is not unexpected that the g2 consistent

with previous Tevatron g2 measurements is returned [34, 46, 60, 90].

To gauge the performance of the fast simulation with the NLO QCD cor-

rections with other generators available, PYTHIA 8.14 Monte Carlo events are

compared with the unfolded Z0 → e+e− data in Figure 8.14. The inability of

the default PYTHIA configuration to describe the transverse momentum distri-

bution coupled with the slower execution time supports the use of a bespoke

generator and detector simulation where higher-order effects can be controlled

and studied with more ease.

There have been efforts to improve the pZT description of Monte Carlo gen-

erators for the Large Hadron Collider but these have been predominantly been

at high-pT [91].
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Figure 8.6: The best fit Monte Carlo compared against (a) Z0 → e+e− and (b) Z0 → µ+µ−

data using g2 = 0.721 GeV2 and ξ = 0.1167. The signed χ distributions are also shown for
(c) Z0 → e+e− and (d) Z0 → µ+µ−.
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Figure 8.7: The best fit Monte Carlo compared against (a) Z0 → e+e− and (b) Z0 → µ+µ−

data using g2 = 0.623 GeV2 and with ξ fixed at 0.1201 (PDF set value). The signed χ
distributions are also shown for (c) Z0 → e+e− and (d) Z0 → µ+µ−.
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Figure 8.8: The best χ2 fit between the background subtracted and unfolded Z0 → e+e−

data and g2-reweighted fast Monte Carlo. One iteration of the unfolding algorithm has been
used to unfold the data.
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Figure 8.9: The best χ2 fit between the background subtracted and unfolded Z0 → e+e−

data and g2-reweighted fast Monte Carlo. One iteration of the unfolding algorithm has been
used to unfold the data.
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Figure 8.10: The best χ2 fit between the background subtracted and unfolded Z0 → e+e−

data and g2-reweighted fast Monte Carlo. One iteration of the unfolding algorithm has been
used to unfold the data.
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Figure 8.11: The best χ2 fit between the background subtracted and unfolded Z0 → e+e−

data and g2-reweighted fast Monte Carlo using the KN global fit parameters for g1 and g3.
One iteration of the unfolding algorithm has been used to unfold the data.
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Figure 8.12: The best χ2 fit between the background subtracted and unfolded Z0 → e+e−

data and g2-reweighted fast Monte Carlo using the KN global fit parameters for g1 and g3.
One iteration of the unfolding algorithm has been used to unfold the data.
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Figure 8.13: The best χ2 fit between the background subtracted and unfolded Z0 → e+e−

data and g2-reweighted fast Monte Carlo using the KN global fit parameters for g1 and g3.
One iteration of the unfolding algorithm has been used to unfold the data.
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Figure 8.14: Default PYTHIA 8.14 compared with unfolded Z0 → e+e− data. No detector
smearing or acceptance effects have been simulated.
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Chapter 9

Conclusions

The transverse momentum of Z0 bosons arising from initial state gluon radia-

tion has been constrained in the electron and muon channels. The g2 parameter

has been extracted and is found to be 0.623±0.014 GeV2 albeit with a χ2/ndf

of 180/117. Adding an additional parameter, ξ, improves the fit agreement

and obtains g2 = 0.721± 0.018 GeV2 and ξ = 0.117± 0.001 with a χ2/ndf of

139/116.

Z0 → e+e− data has been unfolded and g2 = 0.733± 0.038 GeV2 extracted

for ξ = 0.117. Two alternative kinematic variables proposed to replace pZT have

been investigated but are found to be inferior to pZT for determining g2 for the

momentum resolution of the CDF detector.

The two major effects of next-to-leading order quantum chromodynamics

on the extraction of the W mass have been estimated: the contribution of

initial state gluon emission to the transverse momentum of W bosons and the

effect of higher-order QCD on the W boson angular distribution.

The uncertainty on the MW arising from initial state gluon emission is 6

MeV/c2, 7 MeV/c2 and 8 MeV/c2 for the MW
T , plT and /ET fits. For the first

time the systematic effect of next-to-leading order QCD on the helicity of W
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bosons has been investigated and is found to be 3 MeV/c2, 1 MeV/c2 and 4

MeV/c2 for the MW
T , plT and /ET fits.

The effect of parton distribution functions (PDF) has been investigated

and the 1σ uncertainties arising from the MSTW2008 NLO global fit errors

are 10 GeV/c2, 1 GeV/c2 and 4 GeV/c2 for the MW
T , plT and /ET fits. The 1σ

uncertainties from CTEQ6.6 are measured to be 12 MeV/c2, 10 MeV/c2 and

12 MeV/c2 for the MW
T , plT and /ET fits. In addition, the first investigation

of the effect of NNLO PDF sets on the W mass measurement at CDF has

been performed and the systematic contribution is estimated to be 6 GeV/c2,

5eV/c2 and 7eV/c2 for the MW
T , plT and /ET fits.

The mass of the W boson remains important as an input in the mass of the

as of yet unobserved Higgs boson; therefore, reducing the uncertainty of the W

mass helps to further constrain the standard model prediction of the Higgs. As

has been demonstrated, precision measurements of MW are reaching a point

where systematic errors are largely unaffected by statistics and theoretical

errors begin to dominate the expected total uncertainty. The uncertainty of

PDF sets is fast becoming one of the biggest sources of error in the efforts to

reduce the MW uncertainty to less than 25 MeV.

Furthermore, the effect of higher-order QCD on MW also should not be

discounted. The total systematic uncertainty arising from initial state gluon

radiation and higher-order corrections to the angular distribution of W bosons

is 9 MeV/c2 including the 6 GeV/c2 arising from NNLO PDFs that may

partially cancel out when NNLO perturbative QCD generators become more

widespread.
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